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Abstract

Recent zero-shot evaluations have highlighted
important limitations in the abilities of lan-
guage models (LMs) to perform meaning ex-
traction. However, it is now well known that
LMs can demonstrate radical improvements
in the presence of experimental contexts such
as in-context examples and instructions. How
well does this translate to previously studied
meaning-sensitive tasks? We present a case-
study on the extent to which experimental con-
texts can improve LMs’ robustness in perform-
ing property inheritance—predicting seman-
tic properties of novel concepts, a task that
they have been previously shown to fail on.
Upon carefully controlling the nature of the
in-context examples and the instructions, our
work reveals that they can indeed lead to non-
trivial property inheritance behavior in LMs.
However, this ability is inconsistent: with a
minimal reformulation of the task, some LMs
were found to pick up on shallow, non-semantic
heuristics from their inputs, suggesting that the
computational principles of semantic property
inference are yet to be mastered by LMs.

1 Introduction

Carefully controlled behavioral analyses on
meaning-sensitive tasks have revealed holes in the
ability of language models (LMs) to demonstrate
robust meaning extraction and use (Pandia and
Ettinger, 2021; Elazar et al., 2021; Schuster and
Linzen, 2022; Misra et al., 2023; Kim and Schuster,
2023, i.a). However, since a large subset of these
investigations uses zero-shot evaluation as the pri-
mary methodology, there are growing concerns that
they do not paint a complete picture of LMs’ abili-
ties (Lampinen, 2022; Sinclair et al., 2022; Sinha
et al., 2023). Conclusions that LMs lack a par-
ticular ability may be overhasty if it turns out the
ability is easily accessed through in-context learn-
ing, different question formulations, or particular
instructions (Lampinen, 2022; Wei et al., 2022).

A wug is a robin.
A dax is a penguin.
Therefore, a wug can fly

COMPS

{Instruction}

A wug is a robin.
A dax is a penguin.
Q: Which of them can
fly? A: wug 

COMPS- QA

{Instruction}

A toma is a beaver. A bova is a gorilla. Therefore,
a toma/bova has a flat tail.

A toma is a gorilla. A bova is a beaver. Therefore,
a toma/bova has a flat tail.

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

A toma is a beaver. A bova is a gorilla. Q: Which
of them has a flat tail? A: toma/bova

A toma is a gorilla. A bova is a beaver. Q: Which
of them has a flat tail? A: toma/bova

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

Reasoning about
Property Inheritance

Position-based
Heuristics

In-context examples
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Figure 1: We prompt LMs with in-context examples that
are compatible with both, robust property inheritance,
as well as position-based heuristics. At test time, we
evaluate the model on cases where the heuristics support
desirable behavior and on cases where they do not. We
use stimuli from COMPS and its reformulation as a QA
task (COMPS-QA).

Our focus1 in this paper is a particularly chal-
lenging data set for meaning-sensitive behavior:
COMPS (Misra et al., 2023), a dataset of mini-
mal pair sentences that tests the ability of LMs
on property knowledge of everyday concepts (a
beaver/gorilla has a flat tail) and their inheritance
for novel concepts (a wug is a beaver/gorilla. there-
fore a wug has a flat tail). Contemporary LMs
failed miserably on the hardest subset of the COMPS

stimuli, the examples of which contain two novel
concepts (WUG vs. DAX), where only one of them
inherits the target property (has a flat tail):

1Our code can be found in this link

https://github.com/kanishkamisra/fewshotcomps


(1) A wug is a beaver. A dax is a gorilla. There-
fore, a wug/dax has a flat tail.

Given the success of LMs on a wide variety of
complicated tasks, their utter failure on this seem-
ingly straightforward task remains puzzling. Here,
we systematically explore COMPS on five modern
LMs ranging from 1.5–13B parameters, varying
(a) whether models are evaluated zero-shot or with
multiple examples and (b) whether or not instruc-
tions are present.

Unlike other minimal-pair datasets, using
COMPS in an in-context learning setting is non-
trivial (and thus potentially informative). This is be-
cause the task can be solved using a position-based
heuristic. For example, in one subset of COMPS,
the target property is always attached to the first
novel concept—like in (1). Importantly, models’
failures on COMPS were shown to be in part a result
of models’ tendencies towards heuristic behavior:
the performance of LMs is particularly bad when
the distractor (a dax is a gorilla) is recent—i.e., au-
toregressive LMs show a recency bias in attributing
properties to novel concepts. In that sense, COMPS

follows a rich body of work in which tasks are set
up in a manner that two types of generalization
mechanisms can lead to the same prediction, but
only one of which is desirable (McCoy et al., 2019,
2020; Warstadt et al., 2020b; Mueller et al., 2022;
Si et al., 2023; Mueller et al., 2023).

We find that experimental contexts, as opera-
tionalized using in-context examples and instruc-
tions, can in fact demonstrate robust improvements
in LMs’ property inheritance behavior as measured
by the stimuli in COMPS. However, this improve-
ment comes with a caveat: With a minimal refor-
mulation of COMPS into a QA task, where there is a
direct link between the LMs’ output space and the
features of the input that control the heuristic, LMs
show a strong preference towards the heuristic, and
are therefore at chance. This discrepancy suggests
that the improvements on the original task do not
necessarily indicate that the models have success-
fully mastered the reasoning ability required to
perform property inheritance, which remains a key
challenge for them.

2 Methodology

Dataset We use the most difficult subset of
the COMPS dataset (Misra et al., 2023)—COMPS-
WUGS-DIST—for our experiments. This dataset
contains 13,828 sentence pairs of the form similar

to (1), constructed using 152 animal concepts and
991 properties.

Stimuli re-design We take a number of steps to
minimize noise from other (likely uninterpretable)
heuristics beyond the ones we have set out to target.
First, we enforce that the concepts and properties
that appear in the in-context examples are disjoint
from ones that are used in tests. To this end, we
sample 50 concepts and their relevant properties
and reserve it for our in-context examples, leav-
ing the rest to be sampled for our test set. We
also enforce this constraint for our novel concepts—
i.e., all in-context examples contain different nonce
words, and the collection of nonce words for the
in-context examples and the test set is disjoint. Fur-
thermore, we counterbalance the nonce words in
the test set in a manner that having a bias towards
one of them would lead to chance performance. We
additionally also use multiple different sets of in-
context examples, to add variability and to ensure
that the results are not only due to one particular
choice of in-context examples. In total, we use
10 different in-context learning example sets, each
containing 6 different COMPS stimuli. For our test
set, we use a constant set of 256 unique pairs sam-
pled from our pool of stimuli containing unused
concepts and properties.

Heuristics Our most important design decision
is to consider two distinct sets of stimuli—each sep-
arately making available the two types of heuristics
that the LMs could rely upon: FIRST-CORRECT and
RECENT-CORRECT, where the property is inherited
by the first and the most recent novel concept, re-
spectively. That is, for the same set of in-context
examples, we have a version where the first con-
cept is correct like in (1), and one where the most
recent concept is correct:

(2) A wug is a gorilla. A dax is a beaver. There-
fore, a wug/dax has a flat tail.

For each type of in-context stimuli, we similarly
have two versions of test stimuli: one that is con-
sistent with the target heuristic, and one that is not.
That is, a test example that is consistent with the
FIRST-CORRECT heuristic will also have its first
concept be the one that inherits the property in
question, while one which is inconsistent will have
the most recent concept be the inheritor of the prop-
erty. Therefore, a model that shows a preference
for a given heuristic will succeed only on one test



set and succumb on the other, while a model that is
robust to the heuristics will succeed on both.

Reformulation into QA The original COMPS

stimuli test for property inheritance using declar-
ative statements, where models are tested for the
log-probability they asign to the property (has a
flat tail) given either of the two concepts (wug vs.
dax). Here we additionally consider an alternate
formulation of COMPS as a question answering task
(COMPS-QA), where we make the property explicit
in the prompt to the model and instead ask which
of the two concepts possesses it:

(3) A wug is a beaver. A dax is a gorilla. Ques-
tion: Which one of them has a flat tail? An-
swer: wug/dax

Since the shallow heuristics we consider are con-
trolled by the relative ordering of the novel con-
cepts, this formulation of the task directly allows
us to link the models’ output space (the novel con-
cepts) to the heuristics (positions).

Testing setup For the original COMPS setting we
follow Misra et al. (2023) and compare the log-
probability of the property phrase given the correct
vs. the incorrect prefix. For COMPS-QA however,
since we have a constant prefix (same premises and
question), we evaluate the relative log-probability
of the two novel concepts, only one of which is
the correct answer. Accuracy in both cases is the
proportion of cases the correct surface form was
assigned relatively higher log-probability. Since
we use pairwise comparisons throughout, chance
performance is 50%.

Instructions We consider four different kinds of
instruction templates, with varying levels of de-
tail (see appendix B) per formulation (COMPS and
COMPS-QA). In our experiments we report results
on the instruction that gives the best average per-
formance for a given model.

LMs tested We evaluated 5 different open-source
LMs, all of which are decoder-only, and were ac-
cessed using the huggingface hub (Wolf et al.,
2020): GPT-2 XL (Radford et al., 2019); OPT-
6.7b (Zhang et al., 2022); Llama-2 (we used the
7b and the 13b versions; Touvron et al., 2023); and
Mistral-7b (Jiang et al., 2023). Details about the
models can be found in the appendix.

3 Analyses and Results

We evaluate on COMPS and COMPS-QA, with and
without instructions. In each case, we progressively
supply 0 through 6 in-context examples, allowing
us to track the dynamics of the models’ perfor-
mance with an increasing amount of demonstra-
tions. Together with our separate types of test sets
and heuristics encoded in the in-context examples,
along with five different instruction settings (four
with and one without) we run 2420 experiments
per LM. We hypothesize that LMs would be more
sensitive to the positional heuristics in COMPS-QA

because of the clear link between their output space
and the relative position of the novel concepts—the
feature that controls our target heuristics.

Figure 2 shows accuracies of the tested LMs on
our four different COMPS settings as a function
of the number of in-context examples provided to
them, for both: cases where the heuristics are
consistent with success on the test set, and cases
where they are not. We also show an additional
curve denoting the average performance across the
two types of test sets to paint an overall picture of
the models’ performance. In this figure, the extent
to which a model relies on heuristic is indicated by
the gap between the dotted ( ) and the dashed (▲)
lines. A model that is robust to the heuristics will
have curves of both colors rise above chance, with
no gap between the two, while one that is prone to
using heuristics will have its dotted ( ) curve be
substantially greater than its dashed (▲) curve.

Experimental context can improve attribution
of properties to concepts. . . On COMPS, mod-
els unsurprisingly start off at chance performance
on average, corroborating the previous findings of
Misra et al. (2023). However, in the presence of in-
context examples and instructions, they are able to
improve monotonically as the number of in-context
examples increases. It is worth noting Llama-2-
13b does occasionally show a slight preference for
heuristics in the absence of instructions (e.g., 84%
vs. 62% when prompted with 2 examples). An
intermediate conclusion that we draw here is that
LMs can indeed demonstrate non-trivial property
inheritance on observing a few examples that re-
flect that behavior.

. . . but not the attribution of concepts to prop-
erties While experimental context seems to aid
models in attributing properties to the right concept
in context, the same does not hold on COMPS-QA.
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Figure 2: Overall results from our experiments testing LMs on COMPS and COMPS-QA using in-context examples,
with and without instructions. Results are aggregated across both heuristics: FIRST-CORRECT and RECENT-
CORRECT. Error bars are over different sets of in-context examples. All models start off near chance in the
0-shot case, but many improve as more examples are given. Some (e.g., GPT-2 XL on COMPS-QA) show strongly
heuristically driven behavior, as evidenced by the diverging performance on items where heuristics work and those
where they do not. Figures 3 and 4 show fine-grained results.

Similar to COMPS, models start off at chance perfor-
mance on average with a zero-shot set up, however,
unlike in the case of COMPS, LMs seem to consis-
tently prefer the heuristics available in the prompt,
showing worse than chance performance on cases
where the test set does not follow the heuristic. This
is most apparent for GPT-2 XL, OPT6.7b, and
Llama-2-7b—here the gap between the accuracy
for cases where heuristics support performance on
the test set and the accuracy for cases where they
do not almost always worsens with an increase in
the number of exemplars, on average. This is espe-
cially notable for OPT6.7b, which attains perfect
performance on cases where the heuristics match
up with the test set and at the same time it is close
to 0% on cases where they do not. A notable ex-
ception to this trend is Mistral-7b, which seems
to be resilient to the spurious heuristics, showing a
net-positive improvement from the zero-shot case,
especially in the presence of instructions. Never-
theless in the absence of instructions, it too shows a
slight preference for position-based heuristics—for
instance, its accuracy with 6 in-context exemplars
when the heuristics support success on the test set

is 82% and on cases where the heuristics oppose
the test set is 65%.

Our results suggest that LMs are more likely
to show behavior that is compatible with the use
of positional heuristics when their output space
(choice between the two novel concepts) has a clear
connection with positional artifacts in their input
(relative ordering of the novel concepts). This is
consistent with our hypothesis in about 8 out of 10
cases. When this link is not clear and models must
instead predict likely properties given a novel con-
cept (i.e., in COMPS), instructions and in-context
examples do seem to lead to robust performance.
It is important to note that instructions alone do
not always account for the observed improvement—
LMs’ performance on zero-shot settings are consis-
tently still at chance in all cases, suggesting that it is
the in-context examples that critically alter models’
output distribution to support desirable property
inference behavior.

4 Conclusion

In this work, we investigated the extent to which
in-context examples and instructions—key compo-



nents that drive impressive performance in contem-
porary LMs—can overcome important limitations
of LMs at tests that have poked holes in their abil-
ity to extract conceptual meaning from text. As a
case study, we analyzed how well such experimen-
tal contexts can improve LM abilities to perform
property inheritance (Murphy, 2002; Misra et al.,
2023) in context—binding of novel concepts to
existing concepts, and endowing them with valid
property inferences as a result. Our findings sug-
gest that mastery of this ability has yet to be ro-
bustly achieved, and that LMs in general are still
prone to using shallower patterns in their context
(when available) rather than systematically extract-
ing conceptual meaning. At the same time, explor-
ing precisely what makes Mistral less susceptible
to heuristics will be useful to design more robust
LMs, which we leave for future work.

5 Limitations

Single dataset A clear limitation of this work
is that it exclusively focuses on a single dataset:
COMPS (Misra et al., 2023). So, a question that
arises here is to what extent are our findings local-
ized to the chosen dataset vs. meaning-sensitive
evaluations in general. This would require a further
non-trivial, non-straightforward amount of work,
since: (1) different meaning sensitive evaluations
focus on different (though equally useful) opera-
tionalizations of meaning; and more importantly
(2) not all prior work in this area focuses on a stan-
dardized and well-defined usage of heuristics that
is directly transferable to the experimental setup
we have used in this work (following McCoy et al.,
2019, 2020; Warstadt et al., 2020b; Mueller et al.,
2022; Si et al., 2023).

We do hope that our work contributes to the
larger-scale vision of carefully benchmarking dif-
ferent types of meaning extraction abilities in LMs
in a controlled manner.

Lack of mechanistic insight Our work continues
the long-standing precedent of using carefully con-
structed behavioral experiments to conclude about
the competence of LMs (Linzen et al., 2016; Gulor-
dava et al., 2018; Futrell et al., 2019; Ettinger, 2020;
Warstadt et al., 2020a) However, recent works have
made impressive strides in localizing the kinds of
computations that give rise to the observed behav-
ior in LMs (Hanna et al., 2023; Wang et al., 2023,
i.a.) Therefore, it is entirely possible that our con-
clusions about the precise nature of computations

carried out by LMs can be greatly strengthened
when supplemented by the methods developed in
these aforementioned works.

Single Language Finally, this work only focuses
on property inheritance problems stated in the En-
glish language. This does little to contribute to-
wards diversity in NLP research.
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A Dataset and implementation details

Our experiments use the stimuli from COMPS, re-
leased with an MIT License by Misra et al. (2023),
but with a modification that involves changing of
the nonce words to obey the constraint that the
in-context examples all have different nonce word
pairs. To this end, we use the following nonce-
words:

• In-context examples: wug, dax, fep, zek,
blick, toma, kiki, glorp, bova, zup, tufa, flib
(counter-balanced)

• Test examples: gek, wif (counter-balanced)

A.1 Methodological details
Following COMPS, as well as the precedent set by a
number of previous minimal pair analyses (Linzen
et al., 2016; Gulordava et al., 2018; Futrell et al.,

2019; Wilcox et al., 2019; Warstadt et al., 2020a;
Hu et al., 2020), we use a forced choice task to eval-
uate our LM subjects. Like in COMPS, we compare
the log-probability of the property phrase (here, has
a flat tail) given the choice of left contexts (which
indicate whether the right vs. the wrong concept
has the property). For example, we measure:

logPθ(has a flat tail ∣ a gek is a beaver. a wif is a
gorilla. therefore, a gek/wif),

and for COMPS-QA, we compare the relative proba-
bilities of the two novel concepts given a fixed left
prefix which contains a question about the property.
For example, we measure:

logPθ(gek/wif ∣ a gek is a beaver. a wif is a gorilla.
Question: Which one of them has a
flat tail? Answer:)

In both cases above, gek is the concept that should
inherit the property. While these examples show
the zero-shot case, cases with in-context examples
and instructions simply add more context to the
prefix, therefore the surface form of the output
space remains the same regardless of the number of
in-context examples or the presence of instructions.

Log-probabilities for all models were accessed
using minicons (Misra, 2022),2 a library that
wraps around transformers (Wolf et al., 2020) by
huggingface, and is written in pytorch. For our ex-
periments with Llama-13B, we quantize the model
to 4-bits in order to fit it onto a single GPU. All
experiments were run on a cluster with 4 NVIDIA
A40 GPUs, though each individual experiment on
a model was computed on a single A40 GPU.

A.2 Model Metadata
Table 1 shows the LMs used in this work, along
with their total parameters, tokens encountered dur-
ing training, and vocabulary size.

B Instructions

Tables 2, 3, 4, 5 show our instruction templates.

C Fine-grained results

While Figure 2 shows results aggregated over both
types of heuristics that we have used in this work,
we additionally display finer-grained, heuristics-
wise results in this section. Again, in each of these

2
https://github.com/kanishkamisra/minicons

https://doi.org/10.18653/v1/2020.emnlp-main.16
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Model Params Pre-training Tokens Vocab size

GPT-2 XL 1.5B 8B 50,257
OPT-6.7b 6.7B 180B 50,272
Llama-2-7b 7B 2T 32,000
Llama-2-13b 13B 2T 32,000
Mistral-7b 7B ? 32,000

Table 1: Overview of the LMs used in this work. ‘?’ indicates that the given value was not made available in the
LM’s release.

COMPS version Instruction Template

COMPS Given a pair of statements that introduce novel entities as types of real world
animals, write a true statement about the properties of the novel entities:

{exemplars} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Given a pair of statements that introduce novel entities as types of real world
animals, answer the question that follows:

{exemplars} (omitted in zero-shot)
{test-stimulus}

Table 2: Instructions for COMPS and COMPS-QA with instruction type: “minimal”

COMPS version Instruction Template

COMPS Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by giving them some information about the animals.

Let’s get started:
{exemplars} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by answering some questions about them.

Let’s get started:
{exemplars} (omitted in zero-shot)
{test-stimulus}

Table 3: Instructions for COMPS and COMPS-QA with instruction type: “aliens”

plots, the extent to which a model relies on heuristic
is indicated by the gap between the dotted ( ) and
the dashed (▲) lines. This is now separately shown
for each of our heuristics. Figure 3 shows results
on COMPS with and without instructions for both
the heuristics, and similarly Figure 4 shows results
on COMPS-QA with and without instructions for

both the heuristics.
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(b) COMPS with Instructions

Figure 3: Fine-grained results on COMPS as a function of the number of in-context examples (with and without
instructions).
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Figure 4: Fine-grained results on COMPS-QA as a function of the number of in-context examples (with and without
instructions).



COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to make a conclusion about the properties of one
of the entities by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to make a conclu-
sion about the properties of one of the entities by reasoning over the premise
statements.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world objects. The statements are followed by a question that asks which
novel entity in the premise can a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question that
asks which novel entity in the premise can a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 4: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-1”



COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to write a true statement about the properties
of the novel entities.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to write a true
statement about the properties of the novel entities.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. The statements are followed by a question that asks which
of the introduced entities a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question
that asks which of the introduced entities a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 5: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-2”
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