A Property Induction Framework for Neural Language Models

Kanishka Misra¹, Julia Taylor Rayz¹, Allyson Ettinger²

¹Purdue University ²University of Chicago

Correspondence: kmisra@purdue.edu

Paper:

Overview and Motivation	Property Induction	
--------------------------------	---------------------------	--

Main Idea: Use Property Induction as a tool to to study how knowledge representation in language

models drives inductive generalization with respect to entirely novel properties

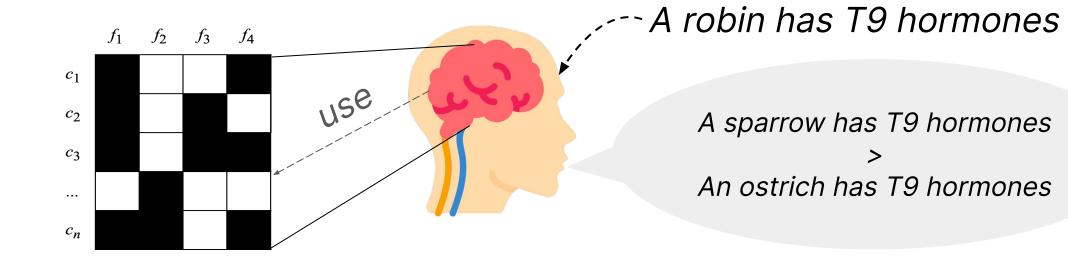
Overall Question: To what extent do models that only rely on language experience learn about everyday concepts and their properties?

Approach: Study the synthetic semantic knowledge of language models by investigating how they perform property induction.

Motivation: Property-inductions made by humans have provided context within which cognitive scientists have explored the nature and organization of human conceptual knowledge.

Inferences that go beyond available data to project novel information about concepts and properties (Osherson et al., 1990; Hayes and Heit; 2018)

• Provide interesting insight into the inductive preferences of humans, in reasoning about concept and property knowledge



In terms of... Goals:

• Different from reasoning that is required for "natural language inference" (Bowman et al., 2015) which is deductive in its formulation.

Contributions

In terms of... Methodology:

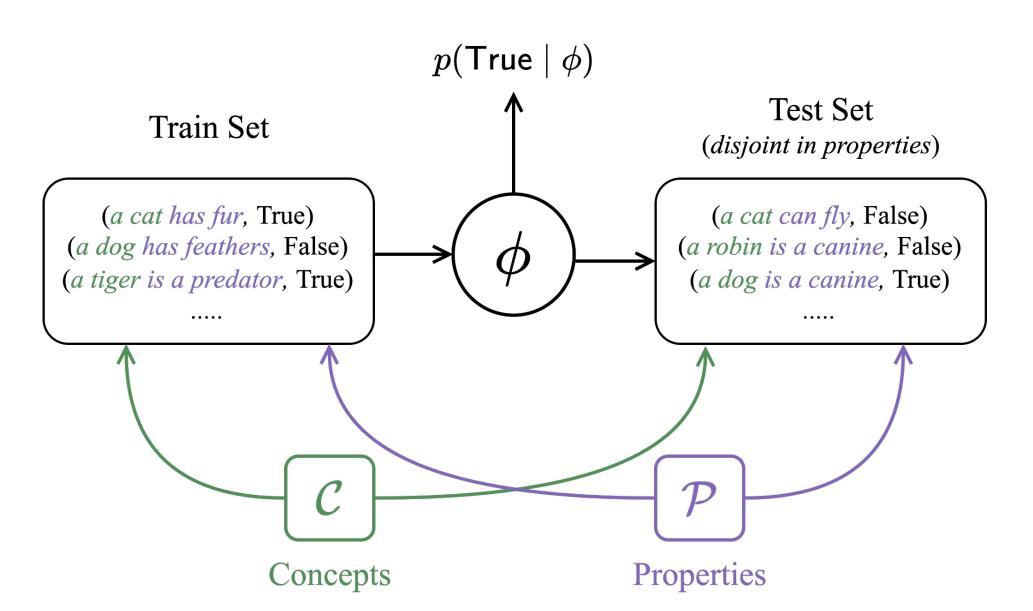
- New paradigm to study generalizations in LMs beyond what they have observed in training.
- Extends line of work on property induction in neural networks (Sloman, 1993; Rogers and McClelland,

2004; Saxe et al., 2019, Misra et al., 2021). In terms of... Findings:

• When fine-tuned on conceptual knowledge, LMs acquire a taxonomic preference in generalizing **novel property information**, that cannot be explained by simple training data statistics.

The Framework

Stage 1: Eliciting Property Judgments from LMs



- Equip existing language models with binary judgments of concept-property associations (Bhatia and Ritchie, 2021).
 - A robin can fly \rightarrow **True**
 - A cat can fly \rightarrow False
- **Setup:** LM fine-tuned to perform binary classification with disjoint set of properties between train and test sets.

Exp. 1: Property Judgments and LMs

- Models (ALBERT-xxl; BERT-large; RoBERTa-large) fine-tuned on sentences formed by linking concepts to properties - sourced from the CSLB dataset (Devereaux et al., 2014).
- 521 concepts & 3735 properties, corresponding to 46,214 true and false sentences (equal distribution)
- Models show similarly high performance on the test set (0.78 - 0.79).

Table 1: F1 scores on the

 test set. Chance = 0.66

F1

0.79

0.78

0.79

Exp. 2: Taxonomic Generalization in LMs

- Within - Outside_{similar} - Outside_{random}

Compare generalization of a novel

Model

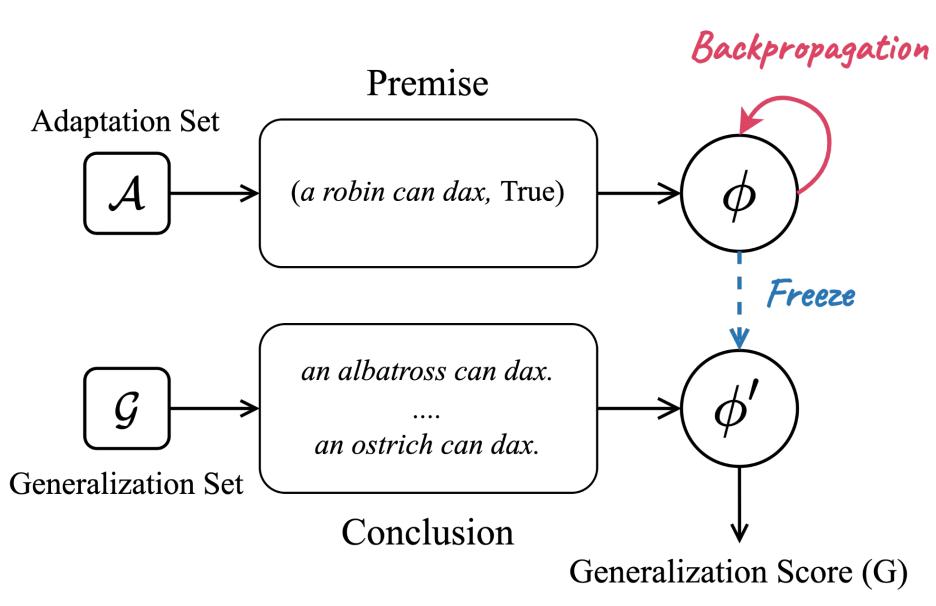
ALBERT-xxI

BERT-large

RoBERTa-large

• See exp. 1 for results.

Stage 2: Property Induction as Adaptation

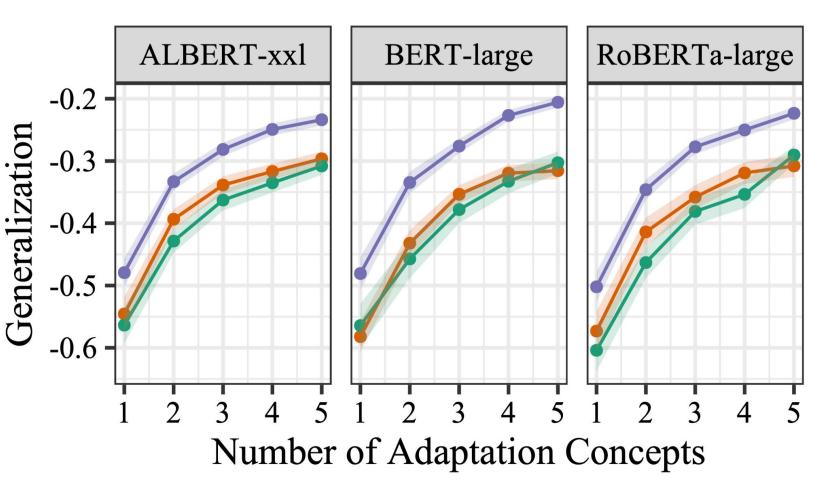


 $G = \frac{1}{n} \sum \log p(\text{True} \mid$

Operationalization of induction: Behavior of LM (from stage 1) after it has been further adapted to novel property information.

Property-induction trial:

- 1. Adapt LM to reflect novel property information for a few known concepts (adaptation set; e.g., a robin can dax), and freeze.
- 2. Query adapted LM to assess generalization of novel property to other concepts (generalization set; e.g., a canary/giraffe can dax). Reset LM for next trial. 3.



Sub-experiment: Inductive generalizations from concepts that share more properties with

superordinate categories *different* than their own (N = 48).

Adaptation: A dolphin can dax, True

- Within: A <mammal> can dax.
- **Outside:** A fish can dax.

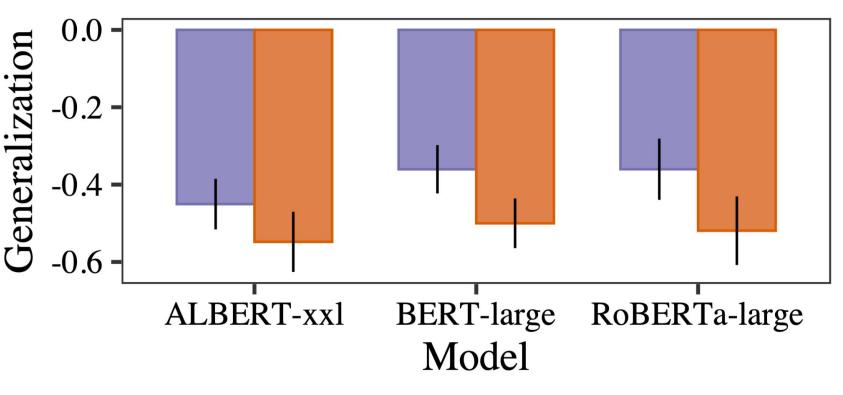
property (e.g., *can dax*) based on category membership (N = 2400).

Adaptation: A crow has blickets, True

Generalization:

- Within: A < bird> has blickets.
- Within-category
- **Outside**_{Similar}: A bat has blickets.
 - Model-dependent outside category
- **Outside**_{Random}: A table has blickets.

• Model-independent outside category



Takeaway: Models prefer to generalize new properties to concepts that are in the same taxonomic category (Within) as opposed to those that are not (Outside).

Summary

" $c_i \ can \ dax.", \phi'$)

Plans for Future Work

- Language Models show strong capacities to assess the association of properties to concepts when expressed in natural language form.
- Generalization of novel properties to known concepts in LMs is--at least in part--guided by category membership, indicating the presence of a taxonomic bias.
- **Hypothesis:** Some of models' taxonomic preference could be due to high property overlap between concepts of the same category observed in training (Exp 1).
 - Findings persisted even when property overlap and category membership were teased apart (see sub-experiment)!

Language Models and their evaluation

- Characterize other qualitative reasoning behavior in LMs, inspired from observations in property induction literature.
- Create "Inductive Reasoning" challenge sets that target specific forms of reasoning involving concepts and properties.

Cognitive Modelling?

- Compare against human behavioral results in property induction literature:
 - Fine-grained taxonomic phenomena (Osherson et al., 1990)
 - Theory-based property induction (Kemp and Tenenbaum, 2009)
- **CompLing Lab** at UChicago for discussions on earlier iterations of the work.

Thanks!

- Purdue RCAC and Hemanth **Devarapalli** for compute assistance.
- Anonymous Reviewers for their helpful feedback.
- Charles Kemp, Tom McCoy, Najoung Kim, and Keith **Ransom** for encouragement and support!
- Purdue Graduate School for a Travel award!