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Overview and Motivation

Overall Question: To what extent do models that only
rely on language experience learn about everyday

concepts and their properties?

Approach: Study the synthetic semantic knowledge of
language models by investigating how they perform

property induction.

Motivation: Property-inductions made by humans have s
provided context within which cognitive scientists have &

explored the nature and organization of human
conceptual knowledge.

Main Idea: Use Property Induction as a tool to to study how knowledge representation in language
models drives inductive generalization with respect to entirely novel properties
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Stage 1: Eliciting Property Judgments from LMs
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(a cat can fly, False)
(a robin is a canine, False)

(a dog is a canine, True)
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Stage 2: Property Induction as Adaptation
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an albatross can dax.
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e |Language Models show strong capacities to assess the
association of properties to concepts when expressed in
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Summary

natural language form.

indicating the presence of a taxonomic bias.

same category observed in training (Exp 1).

o Findings persisted even when property overlap and
category membership were teased apart (see

sub-experiment)!

Generalization of novel properties to known concepts in LMs
Is--at least in part--guided by category membership,

Hypothesis: Some of models’ taxonomic preference could
be due to high property overlap between concepts of the
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Property Induction

e Inferences that go beyond available data to project
novel information about concepts and properties
(Osherson et al., 1990; Hayes and Heit; 2018)

e Provide interesting insight into the inductive
preferences of humans, in reasoning about concept
and property knowledge

e Different from
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An ostrich has T9 hormones
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Contributions

In terms of... Goals:

reasoning that is required for “natural

language inference” (Bowman et al., 2015) which is
deductive in its formulation.

In terms of... Methodology:

e New paradigm to study generalizations in LMs
beyond what they have observed in training.

e Extends line of work on property induction in neural
networks (Sloman, 1993; Rogers and McClelland,

al., 2019, Misra et al., 2021).

In terms of... Findings:

e When fine-tuned on conceptual knowledge, LMs

e EQuip existing language models
with binary judgments of
concept-property associations
(Bhatia and Ritchie, 2021).

o A robin can fly - True

dataset (Devereaux et al., 2014).

set (0.78 - 0.79).

o A cat can fly - False

Setup: LM fine-tuned to perform
binary classification with disjoint
set of properties between train
and test sets.
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has been further adapted to novel Number of Adaptation Concepts

property information. Sub-experiment: Inductive

Property-induction trial: generalizations from concepts that

e Models (ALBERT-xxI: BERT-large; RoBERTa-large)
fine-tuned on sentences formed by linking
concepts to properties - sourced from the CSLB

e 521 concepts & 3735 properties, corresponding to
46,214 true and false sentences (equal distribution)

e Models show similarly high performance on the test

acquire a taxonomic preference in generalizing
novel property information, that cannot be
explained by simple training data statistics.

Exp. 1: Property Judgments and LMs

Model F1
ALBERT-xxl 0.79
BERT-large 0.78
RoBERTa-large 0.79

Table 1: F1 scores on the
test set. Chance = 0.66

Exp. 2: Taxonomic Generalization in LMs

Compare generalization of a novel
property (e.g., can dax) based on
category membership (N = 2400).

Adaptation: A crow has blickets, True
Generalization:
e Within: A <bird> has blickets.
o Within-category
e Outside_ . : A bat has blickets.
o Model-dependent outside category

e Outside eandon A table has blickets.

o Model-independent outside category
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. Adaptation: A dolphin can dax, True § L |
e.g., a robin can dax), and freeze. O 06 - | |

e Within: A <mammal> can dax.

. Query adapted LM to assess e Outside: A fish can dax.

generalization of novel property to
other concepts (generalization set;
e.g., a canary/qgiraffe can dax).

3. Reset LM for next trial.

Plans for Future Work

Language Models and

.. et
their evaluation Cognitive Modelling*

e Characterize other qualitative
reasoning behavior in LMs,
inspired from observations in
property induction literature.

e Compare against human
behavioral results in property
iInduction literature:

o Fine-grained taxonomic
phenomena (Osherson et
al., 1990)

o Theory-based property
induction (Kemp and
Tenenbaum, 2009)

Create “Inductive Reasoning”
challenge sets that target
specific forms of reasoning
Involving concepts and
properties.

BERT-large RoBERTa-large
Model

ALBERT-xx1

Takeaway: Models prefer to generalize new properties to concepts that are in the
same taxonomic category (Within) as opposed to those that are not (Outside).
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