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Authorship 

Attribution

Assigning an author to a piece of text whose author is unknown.
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Authorship 

Attribution

Assigning an author to a piece of text whose author is unknown.
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Predatory 

Conversations

The National Center for Missing and Exploited Children (NCMEC) received 10.2 million reports of 
suspected child exploitation in 2017.
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The Perverted Justice 

Corpus
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The Perverted Justice 

Corpus
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The Perverted Justice 

Corpus

1. Vigilante organization which helps law enforcement perform sting operations
2. Website stores conversations between offenders and decoys
3. Decoys pretend to be a minor 
4. 2004 to present
5. 623 chats
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Research Objectives

Given chat conversations between predators and decoys, and between regular people:

1. Can we successfully identify the author of unknown chat lines? (Comparable to 
State of the Art).

2. Can we separate predators from non-predators using the encoded message 

representation that is trained to only learn the author’s style?
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Research Contributions

1. Place online predators in an Authorship Attribution/Analysis Framework.
2. Propose two new models that operate at the state of the art level for short text AA (for 

our dataset).
a. AA-CNN: A Character Level CNN that is trained to only do AA.
b. AA-CNN-PC: A Character Level CNN that is jointly trained to do AA as well as to distinguish between 

predators and non-predators. 

3. Propose a test that analyzes the properties of the Chat Message Representations
a. Does a model that is only trained to learn author style also differentiate between the type of author?
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Capturing the Author’s 

Style

1. Traditionally: 
a. Lexical: tf/tf-idf of word/character n-grams used in documents, k-signatures, only functional words
b. Syntactical: POS Tags, Dependency Relations.
c. Misc: Sentence length, whitespaces, etc.

2. Character n-grams have been found to be very robust!
3. Idea is to get an ‘author vector’ of some sort to feed to a classifier.

11
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Capturing the Author’s 

Style

1. Traditionally: 
a. Lexical: tf/tf-idf of word/character n-grams used in documents, k-signatures, only functional words
b. Syntactical: POS Tags, Dependency Relations.
c. Misc: Sentence length, whitespaces, etc.

2. Character n-grams have been found to be very robust!
3. Idea is to get an ‘author vector’ of some sort to feed to a classifier.

Work well for Long Documents!
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Capturing the Author’s 

Style - Short Texts

1. Two paths:
a. Take each text separately
b. Bundle chunks of short texts together into a document

2. Both result in sparse vectors if we use count based features
3. Dense representations - sentence encoders (CNN, LSTMs, etc.)
4. Literature: Character sequence + CNN.
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(Ruder et al., 2016; Sari et al., 2017; Shrestha et al., 2017)
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
3. Filtered for authors that have at least 600 unique lines. 345 Authors.
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
3. Filtered for authors that have at least 600 unique lines. 345 Authors.

4. Sample sets of:
a. 10  authors (5 predators, 5 regular users)
b. 50 authors (25 predators, 25 regular users)
c. Remain Consistent with Prior Work!
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
3. Filtered for authors that have at least 600 unique lines. 345 Authors.

4. Sample sets of:
a. 10  authors (5 predators, 5 regular users)
b. 50 authors (25 predators, 25 regular users)
c. Remain Consistent with Prior Work!

5. For each set, sample 400, 100, 100 chat lines per author as train, validation, and test sets.
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
3. Filtered for authors that have at least 600 unique lines. 345 Authors.

4. Sample sets of:
a. 10  authors (5 predators, 5 regular users)
b. 50 authors (25 predators, 25 regular users)
c. Remain Consistent with Prior Work!

5. For each set, sample 400, 100, 100 chat lines per author as train, validation, and test sets.
6. Train Models! 
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Experimental Setup

1. Corpus: Perverted Justice  + PAN 2012 Corpus (IRC Chat logs, regular conversations).
2. Coalesce same-author messages that are one after the other.
3. Filtered for authors that have at least 600 unique lines. 345 Authors.

4. Sample sets of:
a. 10  authors (5 predators, 5 regular users) 4000/1000/1000

b. 50 authors (25 predators, 25 regular users) 20000/5000/5000

c. Remain Consistent with Prior Work!

5. For each set, sample 400, 100, 100 chat lines per author as train, validation, and test sets.
6. Train Models! 
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Baselines/Benchmarks

● Ruder et al. 2016
○ Embedding Size: 300
○ Unigram Character Level CNN.
○ Window sizes: 6, 7, 8
○ Feature Maps: 100
○ Stochastic Gradient Descent with Adadelta
○ 15 Epochs
○ Best results on AA for Tweets, Emails and 

Reddit comments (10 and 50 authors, 2016)

21

● Shrestha et al. 2017
○ Embedding Size: 300
○ 2 Models

■ Unigram Level CNN
■ Bigram Level CNN

○ Window sizes: 3,4,5
○ Feature Maps: 500
○ Adam Optimizer
○ 100 Epochs
○ Best Results on Tweets (10 and 50 authors, 

2017).



Misra, Devarapalli, Ringenberg & Rayz, 2019 IEEE-SMC 2019 Purdue University 22

Figure Source: A Primer on Neural Network Models for Natural Language Processing, Yoav Goldberg

Convolutional Neural Network Refresher
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AA-CNN Model 

Architecture

LAA = Cross Entropy
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AA-CNN-PC Model 

Architecture

LAA = Cross Entropy

LPC = Binary Cross Entropy

Jointly Optimized!



Misra, Devarapalli, Ringenberg & Rayz, 2019 IEEE-SMC 2019 Purdue University 25

Window Size = 3 Window Size = 4 Window Size = 5

Unigram CNN max 

pooled output

Window Size = 3 Window Size = 4 Window Size = 5

Bigram CNN max 

pooled output

Message Representation
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Training Details

● Embedding Size = 100
● Windows = [3, 4, 5]
● Filter Maps = 100
● Final Message Representation size = 3 * 100 * 2 = 600
● Softmax layer hidden dimension = 200
● 50 Epochs with Mini-Batch Size = 32
● Adam Optimizer with learning rate of 0.001 (best out of 0.1, 0.01, 0.005)
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Results

Evaluation Metric: F1 Score (Micro-Averaged)

Model Architecture 10 Authors 50 Authors

Ruder et al. 2016 Emb Size: 300
Feature Maps: 100 0.5250 0.3524

Shrestha et al. 2017 Emb Size: 300
Feature Maps: 500 0.5880 0.4474

Ours (AA-CNN)
Emb Size: 100 x 2

Feature Maps: 100

0.5770 0.4382

Ours (AA-CNN-PC) 0.5490 0.4484



Misra, Devarapalli, Ringenberg & Rayz, 2019 IEEE-SMC 2019 Purdue University

Probing Message 

Representations

Two Models:

1. AA-CNN → Encodes Author Style only

2. AA-CNN-PC →  Encodes Author Style as well as Type (Predator vs Non-Predator)
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Probing Message 

Representations

Two Models:

1. AA-CNN → Encodes Author Style only

2. AA-CNN-PC →  Encodes Author Style as well as Type (Predator vs Non-Predator)

Q. Do the message representations learnt by AA-CNN also encode differences between 
predators and non-predators? 
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t-sne 

representation

Encoded by 

AA-CNN
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t-sne 

representation

Encoded by 

AA-CNN-PC
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Probing Message 

Representations - 

Methodology

Metric: Mean Average Similarity

32

Difference between the MAS of predatory messages to every other predatory message and predatory 
messages to every other non-predatory message.
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Probing Message 

Representations - 

Methodology

For each model (over 10000 iterations):

1. Sample 1000 predatory messages, and 1000 non-predatory messages (with replacement).
2. Compute ΔMAS for each iteration. 
3. Conduct a t-test to measure significance of ΔMAS. 

33
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Probing Message 

Representations - 

Methodology

For each model (over 10000 iterations):

1. Sample 1000 predatory messages, and 1000 non-predatory messages (with replacement).
2. Compute ΔMAS for each iteration. 
3. Conduct a t-test to measure significance of ΔMAS. 

Significant ΔMAS would indicate the model learnt to differentiate between 

predatory and non-predatory messages!
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Probing Message 

Representations - Results

35

Model ΔMAS Significance Test Results

AA-CNN 0.021 t = 1048.3, p = 2.2 ✕10-16

AA-CNN-PC 0.025 t = 1285.8, p = 2.2 ✕10-16
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Conclusion

● Presented an analysis of authorship within a predatory conversations domain.
● Developed two models:

○ AA-CNN → Encodes Author Style only

○ AA-CNN-PC →  Encodes Author Style as well as Type (Predator vs Non-Predator)

● Both models were comparable to state of the art.
● Analysis of message representation found the model that encodes only stylistic properties also 

learns certain differentiating signals between predatory and non-predatory messages.

36



Misra, Devarapalli, Ringenberg & Rayz, 2019 IEEE-SMC 2019 Purdue University

Conclusion

● Presented an analysis of authorship within a predatory conversations domain.
● Developed two models:

○ AA-CNN → Encodes Author Style only

○ AA-CNN-PC →  Encodes Author Style as well as Type (Predator vs Non-Predator)

● Both models were comparable to state of the art.
● Analysis of message representation found the model that encodes only stylistic properties also 

learns certain differentiating signals between predatory and non-predatory messages.
● However, this difference is slightly less as compared to a model that has supervised 

signal for both author style and author type.
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Future Work

● Tying into risk associated with the Predator in predator chats (Presenting on 
Wednesday, in the fuzzy systems and their applications session, WeAT3).

● Scaling up to large set of unique authors.
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Thank You!

Questions?
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Kanishka - @iamasharkskin
Hemanth - @daemon92 Coming soon..

kmisra@purdue.edu
hdevarap@purdue.edu
trigenb@purdue.edu
jtaylor1@purdue.edu

mailto:kmisra@purdue.edu
mailto:hdevarap@purdue.edu
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