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Grooming Stages (O’Connell, 2003)

● Process is motivation-driven
● Non-Linear Stages

○ Differ in length and order
○ Repetitive

● Varies based on desired outcome
● Desired outcome may change
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Pacing of Conversations

● First 20% introduces multiple stages (Black, et al. 2015)
● Taboo topics gradually introduced
● Escalation and deescalation based on response
● Stages often overlap
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Perverted Justice Corpus

● Vigilante organization which helps law enforcement perform sting operations
● Website stores conversations between offenders and decoys
● Decoys pretend to be a minor for Law Enforcement
● 2004 to present
● 623 chats
● Variety of motivations of offenders
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Automatic Detection of Grooming Lines

● Researchers have identified lines corresponding to offender conversations 
(Cano, et al. 2014):
○ Grooming
○ Approach
○ Trust

● Others identified features specific to grooming (Michalopoulos & Mavridis 2011):
○ Sexual affair
○ Gaining Access
○ Deceptive relationship

● The majority have focused on differentiating offender versus non-offender 
(McGhee et al. 2011; Parapar et al. 2012; Ebrahimi et al. 2016)
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Labeling Risk

Low

Typical, non-sexual 
chat

Friendship Forming, 
Relationship Forming, 
Non-Sexual Risk 
Assessment

Medium

Affection, physical 
compliments, 
secrecy, guilt, 
implicit sexual 
undertones

Exclusivity

High

Explicit sexual 
content, references 
to digital to 
physical transition

Sexual stage, Meeting
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Labeling Perverted Justice Corpus

● 13,648 labeled lines in total
● Labeled by researcher in field
● Labeled as chunks
● ±3 lines chosen for transition (3 before, 3 after)
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Labeling Perverted Justice Corpus

● 13,648 labeled lines in total
● Labeled by researcher in field
● ±3 lines chosen for transition (3 before, 3 after)

1     2     3     4     5     6     7     8     9     10     11     12    13

Line Number 
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Low Risk Example

Solicitor: hey
Decoy: hey. ur in jasper?
Solicitor: yes
Decoy: kool wats u doin
Solicitor: nothing
Solicitor: i’m just laying in bed
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Medium Risk Example

Solicitor: look at you just a (***)
Solicitor: lol
Decoy: thanks :p
Solicitor: i think my fav is you in the (***)
Solicitor: well i like them all actually
Decoy: thanks yeah it shows the most of me
Solicitor: yeah a lil bit of your (***)
Solicitor: lol
Decoy: lol yeah i bet you like that ¿:)
Solicitor: yeah i do
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High Risk Example

Solicitor: i’m soo bored ..i’m coming to get u
Solicitor: jk
Solicitor: ouch ..good move
Decoy: ohhh ur jk?lol
Solicitor: unless u want me to ;)
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Fuzzification of Expert Labels

Crisp Labels of risk → Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding. 
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Fuzzification of Expert Labels

Crisp Labels of risk → Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding. 

Chat Message Crisp Label Fuzzy Representation

Message 1 medium [0.0, 1.0, 0.5]

Message 2 medium [0.0, 1.0, 0.75]

Message 3 high [0.0, 0.5, 1.0]

Message 4 high [0.0, 0.75, 1.0]

Message 5 medium [0.0, 1.0, 0.75]
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Fuzzification of Expert Labels

Crisp Labels of risk → Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding. 
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Fuzzy Risk Detection Task

Given a chat line l and its fuzzy representation of risk level, 

μ(l) = [μlow(l), μmedium(l), μhigh(l)]

Learn a model m that can accurately estimate μ(l).
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Fuzzy Risk Detection Task

Given a chat line l and its fuzzy representation of risk level, 

μ(l) = [μlow(l), μmedium(l), μhigh(l)]

Learn a model m that can accurately estimate μ(l).

Model

message 1

message 2

message n

….
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Fuzzy Risk Detection Task

Given a chat line l and its fuzzy representation of risk level, 

μ(l) = [μlow(l), μmedium(l), μhigh(l)]

Learn a model m that can accurately estimate μ(l).

Model

message 1

message 2

message n

….

[0.0, 1.0, 0.5]

[0.0, 1.0, 0.75]

[0.25, 1.0, 0.50]

….
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Experimental Setup

1. Data
a. 13648 lines comprising of 8 online conversations.
b. Split in terms of separate chats

i. 11900 lines (6 Conversations) as Train.
ii. 977 lines (1 Conversation) as Validation.
iii. 771 lines (1 Conversation) as Test.

2. Training
a. Train 2 simple models as baselines to estimate the fuzzified risk level of each message.
b. Select best model with highest metric on validation set.

3. Evaluating
a. Evaluate on test set (A full conversation) using metric.
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Baseline Models

Competitive Baselines in NLP literature for short sentence classification tasks. 

1. Deep Averaging Network (Iyyer et al. 2015):
a. Sentence representation is composed of an average of each of the individual word vectors.
b. A FeedForward Layer on top of the sentence representation can help establish a very simple 

baseline.

2. Convolutional Neural Networks for Sentence Classification (Kim 2014):
a. Sentence representation composed of running multiple width convolutions over the word vectors 

and max-pooling.
b. Typically uses 2 channels, one with pre-trained representations (frozen) and one without (to be 

trained).
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Baseline Models - Word Vector Initialization

Used fasttext embedding (Bojanowski et al. 2016) as the input to the models.

promice = <pr + pro + rom + omi + mic + ice + ce> + <pro + prom + romi + omic + 
mice + ice> + <prom + promi + romic + omice + mice> + <promi + promic + romice 
+ omice>

promise = <pr + pro + rom + omi + mis + ise + se> + <pro + prom + romi + omis + 
mise + ise> + <prom + promi + romis + omise + mise> + <promi + promis + romise 
+ omise> + promice
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Baseline Models - Word Vector Initialization

Used fasttext embedding (Bojanowski et al. 2016) as the input to the models.

promice = <pr + pro + rom + omi + mic + ice + ce> + <pro + prom + romi + 
omic + mice + ice> + <prom + promi + romic + omice + mice> + <promi + promic 
+ romice + omice>

promise = <pr + pro + rom + omi + mis + ise + se> + <pro + prom + romi + 
omis + mise + ise> + <prom + promi + romis + omise + mise> + <promi + promis 
+ romise + omise>
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Deep Averaging Network 
(Iyyer et al. 2015)
Rivals LSTMs as a strong 
baseline, especially for 
smaller datasets.

Embedding Layer: fastText

Message Representation 
with Dimension wise 
Average

2 Layer FFN with 
dropout = 0.5

Fuzzy Set Estimation 
using Sigmoid in the last 
layer.
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CNNs for Sentence 
Classification (Kim, 2014)
Competitive Baseline for 
Small, short text sentence 
classification tasks.

Embedding Layer: fastText

1D CNN with [3, 4, 5] and 2 
Channels

Fuzzy Set Estimation 
using Sigmoid in the last 
layer.

Message Representation 
with Max-Pooling

2 Layer FFN with 
dropout = 0.5
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Figure Source: A Primer on Neural Network Models for Natural Language Processing, Yoav Goldberg

Convolutional Neural Network Refresher
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Baseline Models - Loss Function

L1 Loss along each position of [low, medium, high]
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Baseline Models - Loss Function

L1 Loss along each position of [low, medium, high]

Truth = [0.00, 0.75, 1.00]
Predicted = [0.01, 0.45, 0.89]

L1 Loss = 0.01 + 0.30 + 0.11 = 0.42
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Evaluation Metric - Fuzzy Jaccard Similarity

Jaccard Similarity = Similarity between two sets, A and B.
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Evaluation Metric - Fuzzy Jaccard Similarity

Using Fuzzy versions of A∩B and A∪B, and the cardinarity | A |, The fuzzy jaccard 
similarity is:
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Evaluation Metric - Fuzzy Jaccard Similarity

Using Fuzzy versions of A∩B and A∪B, and the cardinarity | A |, The fuzzy jaccard 
similarity is:

A = [0.00, 0.75, 1.00]
B = [0.21, 0.95, 0.89]

JFuzzy = (0.00 + 0.75 + 0.89)/(0.21 + 0.95 + 1.00) = 0.759
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Results

Model Epochs Parameters Jfuzzy

DAN 1000 ~30k 0.380

CNN 100 ~1.4m 0.455
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Results

Model Epochs Parameters Jfuzzy

DAN 1000 ~30k 0.380

CNN 100 ~1.4m 0.455

... ... ... ...

(Your Model) ... ? ?
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Results

The model learns 
some trivial properties, 
such as continuous 
flow of highly risky 
messages.
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Results

The model also learns 
certain less trivial 
properties, such as 
transitions between 
risk level.
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Conclusion

● Presented a methodology to quantify risk as a Fuzzy rather than Crisp 
phenomenon.

● Proposed simple baselines that provided modest performance (based on our 
evaluation metric).

● The models tend to capture many patterns that agree with the grooming 
literature.
○ It tends to capture continuous flow of risk level.
○ It tends to capture certain transitions between high and low risk.
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Future Work

1. Obvious: Label more data to test more complex models such as Transformers, 
etc.

2. Is low/medium/high enough? Label for grooming events/strategies →WIP by 
Tatiana (First Author).

3. Test with other membership functions for dynamic transition stages.
4. Maintain overall discourse by remembering previous chat messages.
5. Fuzzy loss functions?
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Thank You!
Questions?

Kanishka - @iamasharkskin Coming soon..
trigenb@purdue.edu
kmisra@purdue.edu
jtaylor1@purdue.edu

mailto:kmisra@purdue.edu
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