Not so *Cute* but *Fuzzy*: Estimating Risk of Sexual Predation in Online Conversations.

Tatiana Ringenberg*, **Kanishka Misra***, Julia Taylor Rayz

Applied Knowledge Representation and Natural Language Understanding Lab Purdue University, USA

Grooming Stages (O'Connell, 2003)

- Process is motivation-driven
- Non-Linear Stages
 - Differ in length and order
 - o Repetitive
- Varies based on desired outcome
- Desired outcome may change

Pacing of Conversations

- First 20% introduces multiple stages (Black, et al. 2015)
- Taboo topics gradually introduced
- Escalation and deescalation based on response
- Stages often overlap

Perverted Justice Corpus

- Vigilante organization which helps law enforcement perform sting operations
- Website stores conversations between offenders and decoys
- Decoys pretend to be a minor for Law Enforcement
- 2004 to present
- 623 chats
- Variety of motivations of offenders

Automatic Detection of Grooming Lines

- Researchers have identified lines corresponding to offender conversations (Cano, et al. 2014):
 - Grooming
 - Approach
 - o Trust
- Others identified features specific to grooming (Michalopoulos & Mavridis 2011):
 - Sexual affair
 - Gaining Access
 - Deceptive relationship
- The majority have focused on differentiating offender versus non-offender (McGhee et al. 2011; Parapar et al. 2012; Ebrahimi et al. 2016)

Labeling Risk

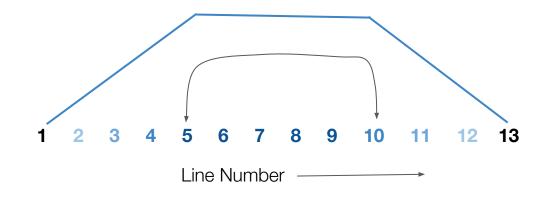
Low	Typical, non-sexual chat	Friendship Forming, Relationship Forming, Non-Sexual Risk Assessment
Medium	Affection, physical compliments, secrecy, guilt, implicit sexual undertones	Exclusivity
High	Explicit sexual content, references to digital to physical transition	Sexual stage, Meeting

Labeling Perverted Justice Corpus

- 13,648 labeled lines in total
- Labeled by researcher in field
- Labeled as chunks
- ±3 lines chosen for transition (3 before, 3 after)

Labeling Perverted Justice Corpus

- 13,648 labeled lines in total
- Labeled by researcher in field
- ±3 lines chosen for transition (3 before, 3 after)



Low Risk Example

Solicitor: hey Decoy: hey. ur in jasper? Solicitor: yes Decoy: kool wats u doin Solicitor: nothing Solicitor: i'm just laying in bed

Medium Risk Example

Solicitor: look at you just a (***) Solicitor: Iol **Decoy:** thanks :p **Solicitor:** i think my fav is you in the (***) **Solicitor:** well i like them all actually **Decoy:** thanks yeah it shows the most of me **Solicitor:** yeah a lil bit of your (***) Solicitor: Iol **Decoy:** lol yeah i bet you like that *i*:) Solicitor: yeah i do

High Risk Example

Solicitor: i'm soo bored ..i'm coming to get u Solicitor: jk Solicitor: ouch ..good move Decoy: ohhh ur jk?lol Solicitor: unless u want me to ;)

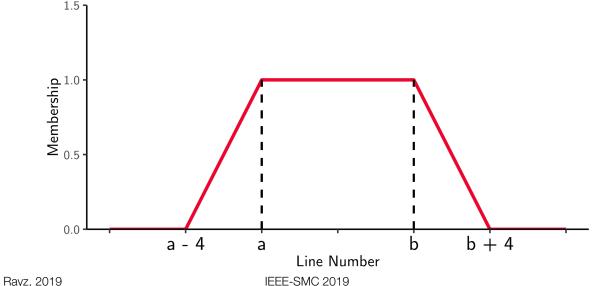
Crisp Labels of risk \rightarrow Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding.

$$\mu_C(l) = \begin{cases} \frac{l-a}{4} & \text{if } a - 4 \leq l < a \\ 1 & \text{if } a \leq l \leq b \\ \frac{b+4-l}{4} & \text{if } b < l \leq b+4 \\ 0 & \text{otherwise} \end{cases}$$

Crisp Labels of risk \rightarrow Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding.



Crisp Labels of risk \rightarrow Trapezoidal Membership Function

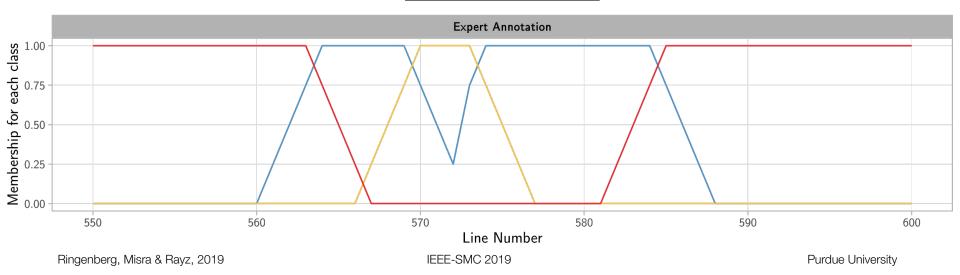
Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding.

Chat Message	Crisp Label	Fuzzy Representation
Message 1	medium	[0.0 , 1.0 , 0.5]
Message 2	medium	[0.0 , 1.0 , 0.75]
Message 3	high	[0.0 , 0.5 , 1.0]
Message 4	high	[0.0 , 0.75 , 1.0]
Message 5	medium	[0.0, 1.0, 0.75]

Crisp Labels of risk \rightarrow Trapezoidal Membership Function

Uniformly increase membership for the 3 preceding lines, decrease for 3 succeeding.

Class 🗕 Iow 🗕 medium 🗕 high



Fuzzy Risk Detection Task

Given a chat line *l* and its fuzzy representation of risk level,

$$\mu(l) = [\mu_{low}(l), \mu_{medium}(l), \mu_{high}(l)]$$

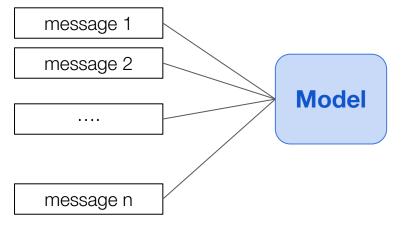
Learn a model *m* that can accurately estimate $\mu(l)$.

Fuzzy Risk Detection Task

Given a chat line *l* and its fuzzy representation of risk level,

$$\mu(l) = [\mu_{low}(l), \ \mu_{medium}(l), \ \mu_{high}(l)]$$

Learn a model *m* that can accurately estimate $\mu(l)$.

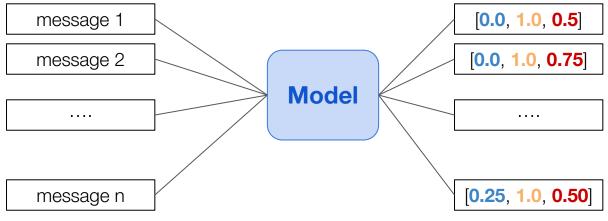


Fuzzy Risk Detection Task

Given a chat line *l* and its fuzzy representation of risk level,

$$\mu(l) = [\mu_{low}(l), \ \mu_{medium}(l), \ \mu_{high}(l)]$$

Learn a model *m* that can accurately estimate $\mu(l)$.



Ringenberg, Misra & Rayz, 2019

IEEE-SMC 2019

Experimental Setup

1. Data

- a. 13648 lines comprising of 8 online conversations.
- b. Split in terms of separate chats
 - i. **11900** lines (6 Conversations) as **Train**.
 - ii. 977 lines (1 Conversation) as Validation.
 - iii. **771** lines (1 Conversation) as **Test**.

2. Training

- a. Train 2 simple models as baselines to estimate the fuzzified risk level of each message.
- b. Select best model with highest metric on validation set.

3. Evaluating

a. Evaluate on test set (A full conversation) using metric.

Baseline Models

Competitive Baselines in NLP literature for short sentence classification tasks.

- 1. Deep Averaging Network (lyyer et al. 2015):
 - a. Sentence representation is composed of an average of each of the individual word vectors.
 - b. A FeedForward Layer on top of the sentence representation can help establish a very simple baseline.
- 2. Convolutional Neural Networks for Sentence Classification (Kim 2014):
 - a. Sentence representation composed of running multiple width convolutions over the word vectors and max-pooling.
 - b. Typically uses 2 channels, one with pre-trained representations (frozen) and one without (to be trained).

Baseline Models - Word Vector Initialization

Used **fasttext** embedding (Bojanowski et al. 2016) as the input to the models.

promice = <pr + pro + rom + omi + mic + ice + ce> + <pro + prom + romi + omic +
mice + ice> + <prom + promi + romic + omice + mice> + <promi + promic + romice
+ omice>

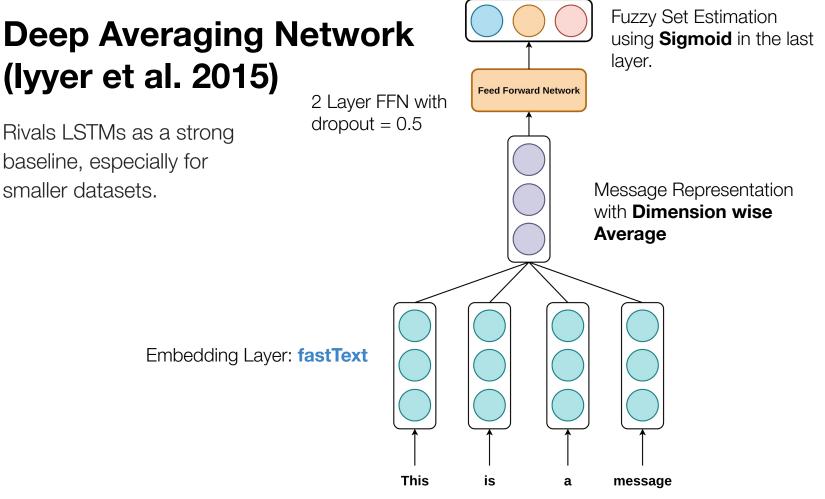
promise = <pr + pro + rom + omi + mis + ise + se> + <pro + prom + romi + omis +
mise + ise> + <prom + promi + romis + omise + mise> + <promi + promis + romise
+ omise> + promice

Baseline Models - Word Vector Initialization

Used **fasttext** embedding (Bojanowski et al. 2016) as the input to the models.

promice = <pr + pro + rom + omi + mic + ice + ce> + <pro + prom + romi +
omic + mice + ice> + <prom + promi + romic + omice + mice> + <promi + promic
+ romice + omice>

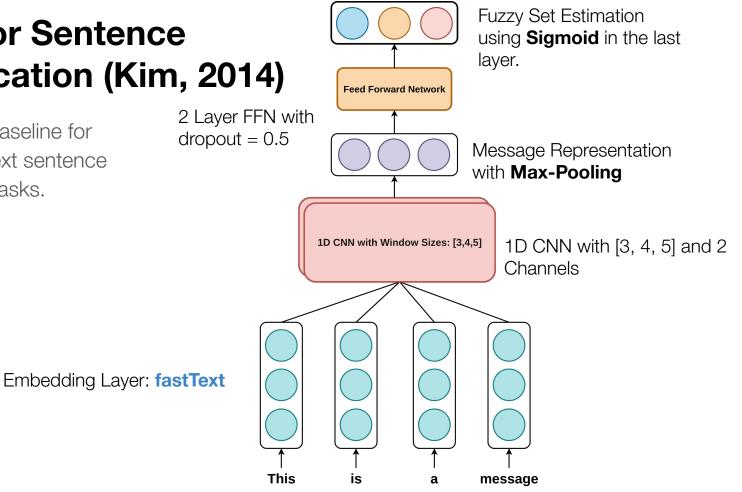
promise = <pr + pro + rom + omi + mis + ise + se> + <pro + prom + romi +
omis + mise + ise> + <prom + promi + romis + omise + mise> + <promi + promis
+ romise + omise>



IEEE-SMC 2019

CNNs for Sentence Classification (Kim, 2014)

Competitive Baseline for Small, short text sentence classification tasks.



IEEE-SMC 2019

Convolutional Neural Network Refresher 6 × 3

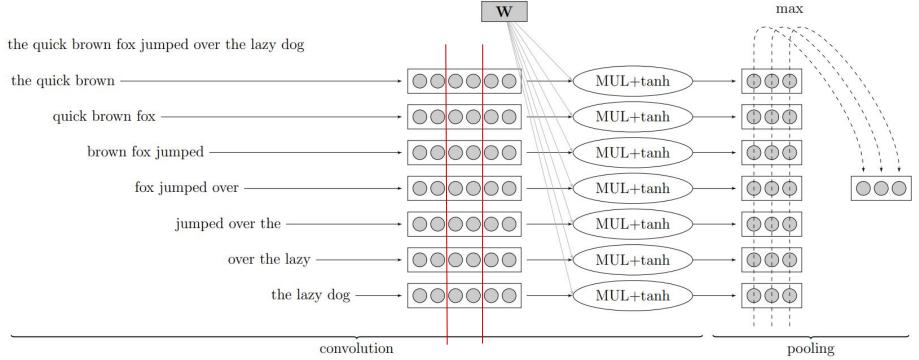


Figure Source: A Primer on Neural Network Models for Natural Language Processing, Yoav Goldberg

Baseline Models - Loss Function

L1 Loss along each position of [low, medium, high]

$$L = \sum_{i \in C} |\mu_i(l) - \hat{y}_i|$$

Baseline Models - Loss Function

L1 Loss along each position of [low, medium, high]

$$L = \sum_{i \in C} |\mu_i(l) - \hat{y}_i|$$

Truth = [0.00, 0.75, 1.00]Predicted = [0.01, 0.45, 0.89]L1 Loss = 0.01 + 0.30 + 0.11 = 0.42

Evaluation Metric - Fuzzy Jaccard Similarity

Jaccard Similarity = Similarity between two sets, A and B.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Evaluation Metric - Fuzzy Jaccard Similarity

Using Fuzzy versions of A∩B and AUB, and the cardinarity | A |, The fuzzy jaccard similarity is:

$$J_{Fuzzy}(A, B) = \frac{\sum_{i \in C} \min \{\mu_i(A), \mu_i(B)\}_{i \in C}}{\sum_{i \in C} \max \{\mu_i(A), \mu_i(B)\}_{i \in C}}$$

Evaluation Metric - Fuzzy Jaccard Similarity

Using Fuzzy versions of A∩B and A∪B, and the cardinarity | A |, The fuzzy jaccard similarity is:

$$J_{Fuzzy}(A,B) = \frac{\sum_{i \in C} \min \{\mu_i(A), \mu_i(B)\}_{i \in C}}{\sum_{i \in C} \max \{\mu_i(A), \mu_i(B)\}_{i \in C}}$$

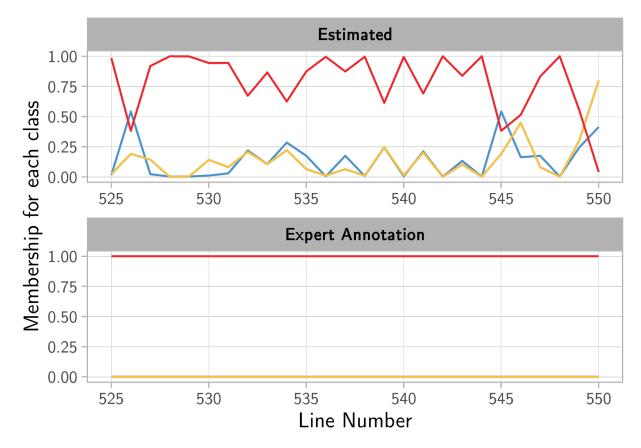
$$\mathbf{A} = [0.00, 0.75, 1.00]$$
$$\mathbf{B} = [0.21, 0.95, 0.89]$$
$$\mathbf{J}_{Fuzzy} = (0.00 + 0.75 + 0.89)/(0.21 + 0.95 + 1.00) = 0.759$$

Model	Epochs	Parameters	J _{fuzzy}
DAN	1000	~30k	0.380
CNN	100	~1.4m	0.455

Model	Epochs	Parameters	J _{fuzzy}
DAN	1000	~30k	0.380
CNN	100	~1.4m	0.455
(Your Model)		?	?

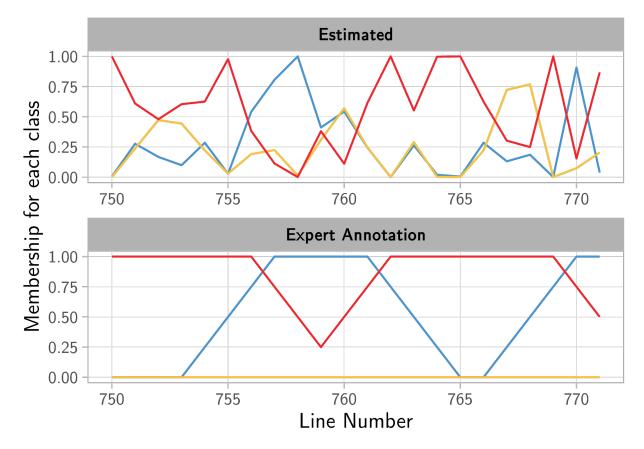
Class	_	low	 medium	_	high

The model learns some trivial properties, such as **continuous flow of highly risky messages**.



Class	 low	 medium	high

The model also learns certain less trivial properties, such as **transitions between risk level**.



Conclusion

- Presented a methodology to quantify risk as a Fuzzy rather than Crisp phenomenon.
- Proposed simple baselines that provided modest performance (based on our evaluation metric).
- The models tend to capture many patterns that agree with the grooming literature.
 - It tends to capture continuous flow of risk level.
 - It tends to capture certain transitions between high and low risk.

Future Work

- 1. **Obvious:** Label more data to test more complex models such as Transformers, etc.
- Is low/medium/high enough? Label for grooming events/strategies →WIP by Tatiana (First Author).
- 3. Test with other membership functions for **dynamic transition stages**.
- 4. Maintain overall discourse by *remembering* previous chat messages.
- 5. Fuzzy loss functions?

Thank You! Questions?

trigenb@purdue.edu kmisra@purdue.edu jtaylor1@purdue.edu

[1] O'Connell, R. (2003). A typology of child cybersexploitation and online grooming practices. Preston, UK: University of Central Lancashire.

[2] Black, P. J., Wollis, M., Woodworth, M., & Hancock, J. T. (2015). A linguistic analysis of grooming strategies of online child sex offenders: Implications for our understanding of predatory sexual behavior in an increasingly computer-mediated world. *Child Abuse & Neglect*, 44, 140-149.

[3] Cano, A. E., Fernandez, M., & Alani, H. (2014, November). Detecting child grooming behaviour patterns on social media. In *International conference on social informatics* (pp. 412-427). Springer, Cham.

[4] Michalopoulos, D., & Mavridis, I. (2011, June). Utilizing document classification for grooming attack recognition. In 2011 IEEE Symposium on Computers and Communications (ISCC) (pp. 864-869). IEEE.

[5] McGhee, I., Bayzick, J., Kontostathis, A., Edwards, L., McBride, A., & Jakubowski, E. (2011). Learning to identify internet sexual predation. *International Journal of Electronic Commerce*, *15*(3), 103-122.

[6] Parapar, J., Losada, D. E., & Barreiro, A. (2012). A Learning-Based Approach for the Identification of Sexual Predators in Chat Logs. In *CLEF (Online Working Notes/Labs/Workshop)* (Vol. 1178).

[7] Ebrahimi, M., Suen, C. Y., & Ormandjieva, O. (2016). Detecting predatory conversations in social media by deep convolutional neural networks. *Digital Investigation*, *18*, 33-49.