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Motivation

Errors made in Natural Language = Lexical Choice of the author.
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Motivation

Errors made in Natural Language = Lexical Choice of the author.

Incorrect usage Correct replacement

scene N stage
(scéne) (scéne)

possibility N opportunity
(possibilitat) (opportunitat)
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Goals and

Contributions

1. Build on research investigating errors in lexical choice of English learners.

2. Investigate how distributional semantic vector spaces can help extract the influence of a
learner’s native language (1) on errors made in English.

3. Investigate whether distributional semantic vector-space based measure of L1 influence

can show patterns within genealogically related languages.
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Background - Influence

of L11n Lexical Choice

Influence of L1 studied as lexical lexical
links links
. - L1
1. Translation Ambiguity. . L2 L2
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concepts
concepts

Prior et al., 2007; Degani & Tokowicz, 2010; Boada et

al., 2013; Bracken et al., 2017; inter alia.
Figure Source: Bracken et al,, 2017 pg. 3
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Background - Influence

of L11n Lexical Choice

Influence of L1 studied as

2. Error Detection and Correction

® L1 error probabilities improved error correction of L2 preposition usage.
e  Parallel corpora led to improvements in detecting and correcting mis-collocations.

W Error Statistics (

L1 Corpora J 'L

L2 Corpora

Chang 2008; Rozovskaya & Roth, 2010, 2011;
Dahlmeier & Ng, 2011; Kochmar & Shutova, 2016,
2017; inter alia.
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Background - Influence

of L11n Lexical Choice

Influence of L1 studied as

3. Large scale L2 (English) Learning analysis

Why are some words harder to learn for speakers of certain languages than others?

Cognate level features to estimate word learning accuracy on large data (Duolingo)

Languages covered: Spanish, Italian, Portuguese.

Leveraged distributional semantic vectors to estimate ambiguity between correct word and word as used by the learner

(translation distance) that was found to correlate negatively with Learning accuracy.

Hopman et al. 2018
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Kochmar & Shutova

(2016, 2017)

Analysis of L1 effects in L2 semantic knowledge of content word combinations (Adjective-Noun,
Verb-Direct Object, Subject-Verb) — Leverage semantic features induced from L1 data to improve error
detection in learner English.

Our paper is related to three out of five Hypotheses covered in K&S:

1. L1 lexico-semantic models influence lexical choice in L2
2. L1 lexico-semantic models are portable to other typologically similar languages
3. Typological similarity between L1 and L2 facilitates semantic acquisition of knowledge in L2.
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Kochmar & Shutova

(2016, 2017)

Main Findings:

1. Semantic models of lexical choice from L1 helped in improving error detection.
2. The improvement was also observed when the L1 belonged to the same family (i.e., Germanic in

this case).
3. Lexical distributions of content word combinations were found to be closer to native English
for typologically distant L1s rather than closer L1s.
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Kochmar & Shutova

(2016, 2017)

Lexical distributions of content word combinations were found to be closer to English for
typologically distant L1s rather than closer L1s.

® Learners from typologically distant languages prefer to use prefabricated phrases (eg. Asian L1s)

since they like to “play-it-safe”, as noted in previous works.
® Those from typologically similar L1s tend to feel more confident and adventurous -> experiment

with novel word combinations.

Hulstijn and Marchena (1989); Gilquin and Granger 2011
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Background - Word

Embeddings

Operationalize the Distributional Hypothesis:
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Background - Word

Embeddings

Operationalize the Distributional Hypothesis:

“The complete meaning of a word is always contextual, and no study of meaning apart from

context can be taken seriously.” - Firth (1935)
“Words that occur in similar contexts have similar meaning” ~ Harris (1954)

“You shall know a word by the company it keeps” - Firth (1957)
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Background - Word

Embeddings

d-dimensional dense vectors (R?), commonly learned using models that leverage the context

words surrounding the focus word.

PMI-SVD: Operate on Pointwise Mutual Information between words.

2. word2vec (Mikolov et al. 2013): shallow neural network that is trained to predict the
context words from a given input word.

3. GloVe (Pennington et al. 2014): shallow neural network that operates on global

co-occurrence statistics between words.
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Background - Word

Embeddings
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Background - Word

Embeddings

Nearest Neighbors in word2vec Linear Analogies in word2vec (a:b::c:d)

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

apple france January Type of relationship Word Pair | Word Pair 2
Common capital city Athens Greece Oslo Norway
apples French February All capital cities Astana | Kazakhstan | Harare | Zimbabwe
pear Belgium October Cumpency Angols | korme sy o
fruit Pari D b City-in-state Chicago Illinois Stockton California
rul aris ecember Man-Woman brother sister grandson | granddaughter
berry Ger many November Adjective to adverb apparent apparently rapid rapidly
pears Italy August Opposite possibly | impossibly || ethical unethical
strawberry Spain September Compsealive o o Smgh e
Superlative easy easiest lucky luckiest
PeaCh Nant(.es Mar(.:h Present Participle think thinking read reading
potato Marseille April Nationality adjective || Switzerland |  Swiss || Cambodia | Cambodian
grape Montpellier June Past tense walking walked swimming swam
blueb erry Les_ Bleus _]uly Plural nouns mouse mice dollar dollars
~ Plural verbs work works speak speaks
Mikolov et al. 2013
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Background - Word

Embeddings

fasttext: word2vec applied on subwords (3-6 character n-grams) — Easy to construct vectors for
unknown words.

this = <th + thi+ his + is> + <thi + this + his> + <this + this>

polyglot: trained to predict higher score for original context window of a word vs. a corrupted sample
(replace middle word with a random word).

imagination is greater than detail vs imagination is wikipedia than detail

Al-Rfou et al. 2013; Bojanowski et al. 2016
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Background - Word

Embeddings

fasttext: word2vec applied on subwords (3-6 character n-grams) — Easy to construct vectors for
unknown words.

this = <th + thi+ his + is> + <thi + this + his> + <this + this>

polyglot: trained to predict higher score for original context window of a word vs. a corrupted sample
(replace middle word with a random word).

imagination is greater than detail vs imagination is wikipedia than detail

Advantage: Both vector spaces available for multiple languages.

Al-Rfou et al. 2013; Bojanowski et al. 2016
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Corpus

Cambridge First Certification in English (FCE; Yannakoudakis et al. 2011)

2488 short-essay based responses written by English Learners.

B2 proficiency under the Common European Framework of Reference for Languages (CEFR).
Error Annotated - with correct replacements for incorrect language.

Annotation following the scheme of Nicholls (2003).

Learners represent 16 different L1 backgrounds.

Only include errors involving a content word (Nouns, Adjectives, Verbs, Adverbs).

Total Instances: 5521
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Preprocessing

® Translation of incorrect - correct pairs (i, ¢) into learner’s L1 using Microsoft Azure API.
e Discarded multi-word translations and errors made by Dutch L1 learners (only 5 instances).
e Total Instances: 4932
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Preprocessing

Table 1. Number of Errors made by learners representing various L1s in the corpus

L1 Errors L1 Errors L1 Errors
Spanish 796 Catalan 325 Turkish 272
French 794 Chinese (Simplified) 310 Japanese 192
Greek 353 Polish 295 Korean 185
Russian 340 German 285 Thai 122
Italian 335 Portuguese 284 Swedish 44
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Influence of L1

Error Pair Neighborhood Overlap (EPNO): Quantifies the semantic relatedness between (i, ¢) word pairs
based on their nearest neighbors for a given language vector space. Here, k = 10.

Avg sim between i and Avg sim between ¢ and
neighbors of ¢ neighbors of i

EPNOL(Z',C):%[ Z cos(i,c’)+ Z cos(c,f,;’)]

c/ENN[(c) i ENNL(3)

K k-nearest neighbor J

function
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ICCM 2019
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proposal Avg. Sim: 0.632 opinions
message > explanation
complaint agenda
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Experiment 1: Measuring

L1 Influence

Whether distributional representation of words reflect L1 influence on learner English Error Words.

® Spearman’s Rank Correlation Statistic ( p) between EPNOEngh.Sh and EPNOL ) for all L1s.
® Positive value — Association between L1 and English content word errors based on semantic relatedness.

e Significance is tested using a non-parametric bootstrap for 1000 resamples in each language.
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Swedish
Italian
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German
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Misra, Devarapalli & Rayz, 2019

L1 P fasttext P potyglot
Swedish 0.573 (<.001) 0.516 (<.001)
Italian 0.565 (<.001) 0.355 (<.001)
Japanese 0.457 (<.001) NA
Polish 0.546 (<.001) 0.356 (<.001)
Portuguese 0.543 (<.001) 0.369 (<.001)
Chinese (Simplified) 0.588 (<.001) 0.322 (<.001)
German 0.505 (<.001) 0.384 (<.001)
Spanish 0.539 (<.001) 0.351 (<.001)
Turkish 0.492 (<.001) 0.369 (<.001)
French 0.477 (<.001) 0.373 (<.001)
Greek 0.489 (<.001) 0.351 (<.001)
Catalan 0.403 (<.001) 0.312 (<.001)
Russian 0.552 (<.001) 0.129 (<.025)
Korean 0.366 (<.001) 0.281 (<.001)
Thai 0.373 (<.001) 0.006 (.953)

ICCM 2019

Purdue University
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Experiment 1: Results

e Significant, Positive p values between all L1s and English.
® Exceptions: Thai (non-significant) and Japanese (not included) within Polyglot.

® Word Embedding models reflect L1 influence over learner English errors to some extent.
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Experiment 2: L1

Influence and Language
Families

Whether distributional representation of words exhibit similar relationships between genealogically
similar languages.

® Group L1s into Genealogical groups:

Germanic: German, Swedish

Romance: French, Spanish, Catalan, Italian, Portuguese
Asian: Chinese (simplified), Japanese, Korean, Thai
Slavic: Russian, Polish

Other™: Turkish, Greek

o O O O O

*Other computed but not included in analysis
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Experiment 2: L1

Influence and Language
Families

Whether distributional representation of words exhibit similar relationships between genealogically
similar languages.

e Compute differences between EPNOEngh.Sh and EPNO, , — 4 fastiext and Apo within groups.

lyglot
® A computed for 1000 (i, ¢) resamples within each group averaged over 10,000 iterations.
® A lower A would indicate similarities in error word pairs between the group and English.

® Measure significance of difference in 4 between groups using ANOVA.

Misra, Devarapalli & Rayz, 2019 ICCM 2019 Purdue University 40



Misra, Devarapalli & Rayz, 2019

Group

L1

fasttex

polyglot

Germanic

German
Swedish

0.135

0.184

Romance

Spanish
Catalan
[talian
French
Portuguese

0.129

0.188

Slavic

Russian
Polish

0.127

0.226

Asian

Chinese
Japanese*
Korean
Thai

0.123

0.217

Other

Turkish
Greek

0.128

0.195

1CCM 201%

Purdue University
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Experiment 2: Results

e Contrasting results between A fast and 4

ext polyglot:
A4 tends to agree with the initial assumptions of K&S (2016, 2017) — Languages closer to
polyglot
English (EPNOGerm ) are least different from EPNO

anic English’
o 4 tends to agree with the findings of K&S (2016, 2017) — Languages farther from
Sfasttext
English (EPNO, . , EPNO,, ) are least different from EPNOy, gy
® One-way ANOVA test revealed significant differences between language groups for both fasttext

(F(4, 49995) = 16539, p < 2x 107'%), and polyglot (F(4, 49995) = 128751, p < 2 x 1071°),
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Experiment 2: Vector
Differences

fasttext

polyglot

300 dimensional

Vocabulary size of 1m - 10m

objective

Trained using a subword level + contextual

64 dimensional
Vocabulary size of 10k - 100k

Trained using only contextual objective

Misra, Devarapalli & Rayz, 2019
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Experiment 2: Vector

Differences influence NN

choice

Misra, Devarapalli & Rayz, 2019

Nearest neighbors of almost in fasttext and polyglot embeddings

fasttext polyglot
nearly nearly
practically once
virtually roughly
almsot just
Almost equally
amost virtually
alsmost somewhat
alomst less
damn-near absolutely
pretty-much slightly

ICCM 2019

Purdue University
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Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual

word embedding models: fasttext and polyglot.
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Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual
word embedding models: fasttext and polyglot.

® Association of L1 with English error word pairs.
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Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual
word embedding models: fasttext and polyglot.
® Association of L1 with English error word pairs.

® Analysis of patterns when L1s grouped into Genealogical groups.
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Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual
word embedding models: fasttext and polyglot.

® Association of L1 with English error word pairs.

® Analysis of patterns when L1s grouped into Genealogical groups.

e Conflicting results between:
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Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual
word embedding models: fasttext and polyglot.
® Association of L1 with English error word pairs.
® Analysis of patterns when L1s grouped into Genealogical groups.
e Conflicting results between:
o fasttext (similar L1s most semantically different than English)

o polyglot (distant L1s most semantically different than English)

Misra, Devarapalli & Rayz, 2019 ICCM 2019 Purdue University 49



Conclusion

® Analysis of L1 effect on content word errors based on semantic relatedness using two multilingual
word embedding models: fasttext and polyglot.
® Association of L1 with English error word pairs.
® Analysis of patterns when L1s grouped into Genealogical groups.
e Conflicting results between:
o fasttext (similar L1s most semantically different than English)
o polyglot (distant L1s most semantically different than English)

o Difference in results attributed to inherent differences between vector spaces.
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Limitations

e Highly dependent on translation quality.
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Limitations

e Highly dependent on translation quality.

e Small corpus — might not be representative.
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Limitations

e Highly dependent on translation quality.
e Small corpus — might not be representative.

e How much positive correlation between semantic overlap is sufficient to explain variation?
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Limitations

e Highly dependent on translation quality.
e Small corpus — might not be representative.

e How much positive correlation between semantic overlap is sufficient to explain variation?

® Not a “default” ICCM work...
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Future Work

e Take into account bilingual lexicons for better translation. BabelNet, Multilingual Wordnet, etc.
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Future Work

Take into account bilingual lexicons for better translation. BabelNet, Multilingual Wordnet, etc.
Contextualized word vectors: word’s vector dependent on the context it occurs in (different vectors

for different senses & occurences of the word)

I would like to book an appointment. vs I enjoyed reading that book.
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Future Work

Take into account bilingual lexicons for better translation. BabelNet, Multilingual Wordnet, etc.
Contextualized word vectors: word’s vector dependent on the context it occurs in (different vectors

for different senses & occurences of the word)
I would like to book an appointment. vs I enjoyed reading that book.

® Collection of a larger, more representative error annotated corpus:
O  Can be used to fit a model to estimate error rates of content words in the corpus.
O  Model can use Semantic features such as word vector dimensions.

O  Analysis of model estimates — better explanation power.
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PURDUE

UNIVERSIT Y.

Kanishka - @iamasharkskin
Hemanth - @daemon92

Misra, Devarapalli & Rayz, 2019

Thank You!
Questions?

kmisra@purdue.edu
hdevarap@purdue.edu

jtaylorl @purdue.edu

ICCM 2019
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Model == fasttext == polyglot
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Agenda

® Motivation
® Goals and Contributions of the Research

® Literature
©  Word Embeddings

o L1 Influence on Content Word Errors
® Measuring L1 influence Within Word Embeddings
® Investigating differences in

® Questions and Discussions
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