An Approximate Perspective on Word Prediction in Context: Ontological Semantics meets BERT

<u>Kanishka Misra</u> and Julia Taylor Rayz Purdue University NAFIPS 2020

Virtually, from West Lafayette, IN, USA

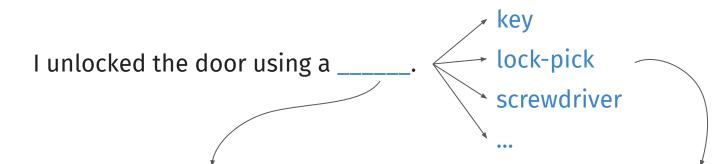
Summary and Takeaways

• Neural Networks based Natural Language Processing:

Word Prediction in Context (WPC) -> Language Representations -> Tasks

- **This work:** Qualitative Account of WPC using a meaning-based approach to knowledge representation.
- Case Study on the BERT model (Devlin et al., 2019).

Word Prediction in Context

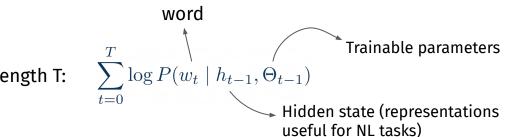


Cloze Tasks (Taylor, 1965)

Participants predict blank words in a sentence by relying on the context surrounding the blank.

Pretraining

Process of training a Neural Network on large texts. Usually using a Language Modelling objective



For a sequence of length T:

Misra and Rayz, 2020

3

Large Transformer network (Vaswani et al., 2017) trained on large pieces of text to do the following:

Oh, I love coffee! I take coffee with [MASK] and sugar. 1 2

- 1) Masked Language Modelling: What is [MASK]?
- 2) Next Sentence Prediction: Does 2 follow 1?

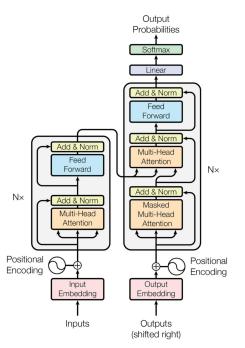


Figure 1: The Transformer - model architecture. (Figure from Vaswani et al., 2017)

Devlin et al., 2019

Strong empirical performance when tested on:

- Attributing nouns to their hypernyms: A <u>robin</u> is a bird.
- **Commonsense and Pragmatic Inference:** He caught the <u>pass</u> and scored another <u>touchdown</u>. There was nothing he enjoyed more than a good <u>game</u> of [MASK].

P(football) > P(chess)

- Lexical Priming:
 - (1) *delicate.* The tea set is very [MASK].
 - (2) **salad.** The tea set is very [MASK].

P(**fragile** | (1)) > P(**fragile** | (2))

(Ettinger, 2020; Petroni et al., 2019; Misra et al., 2020)

Semantic Capacities of BERT

Weak performance when tested on:

- **Role-reversal:** waitress <u>serving</u> customer vs. customer <u>serving</u> waitress.
- **Negation:** A robin is <u>not</u> a [MASK]. P(bird) = high.

To what extent does BERT understand Natural Language?

(Ettinger, 2020; Kassner and Shutze, 2020)

Analyzing BERT's Semantic and World Knowledge Capacities

Commonsense & World Knowledge

Items adapted from Psycholinguistic experiments (Ettinger, 2020):

Federmeier and Kutas (1999): He caught the <u>pass</u> and scored another <u>touchdown</u>. There was nothing he enjoyed more than a good <u>game</u> of [MASK].

P(football|context) > P(chess|context) [~75% accuracy]

Items constructed from existing Knowledge bases (Petroni et al., 2019)

iPod Touch was produced by [MASK].

Argmax P([MASK] = x) = Apple

Misra and Rayz, 2020

Analyzing BERT's Semantic and World Knowledge Capacities

Semantic Inference

Items adapted from Psycholinguistic experiments (Ettinger, 2020):

Chow et al. (2016): (1) the restaurant owner forgot which <u>customer the waitress</u> had [MASK]. (2) the restaurant owner forgot which <u>waitress the customer</u> had [MASK].

P([MASK] = served | (1)) > P([MASK] = served | (2)) [~80% accuracy]

Fischler et al. (1983): (1) A robin is a [MASK]. (2) A robin is not a [MASK].

<add results>

Analyzing BERT's Semantic and World Knowledge Capacities

Lexical Priming

Items adapted from Semantic Priming experiments (Misra, Ettinger, & Rayz, 2020):

- (1) *delicate.* The tea set was very [MASK].
- (2) *salad.* The tea set was very [MASK].

<add results>

Ontological Semantic Technology (OST)

Meaning first approach to knowledge representation (Nirenburg and Raskin, 2004).

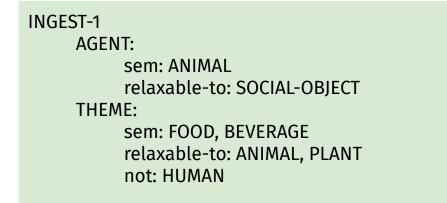


Taylor, Raskin, Hempelmann (2010); Hempelmann, Raskin, Taylor (2010); Raskin, Hempelmann, Taylor (2010)

Fuzziness in OST

Facets assigned to properties of Events.

For any event, E, its facets represent memberships of concepts based on the properties that are endowed to E.



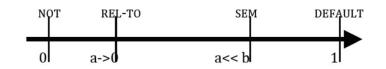


Fig. 2: Relative membership values of facet gradation

Taylor and Raskin (2010, 2011, 2016)

Misra and Rayz, 2020

Fuzziness in OST

Descendents of the default concept have higher membership than the sem facet.

E.g. TEACHER and INEXPERIENCED-TEACHER

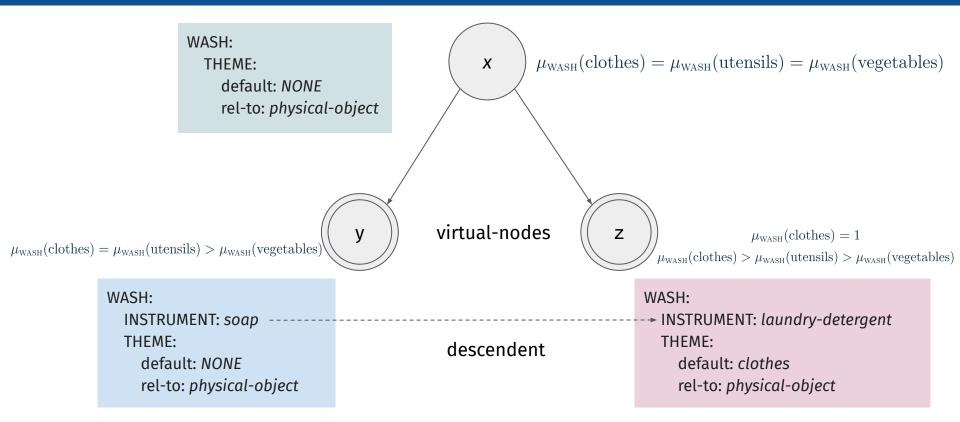
 $\mu_E(\text{sem}) < \mu_E(descendant(\text{default})) < 1$

Fig. 4: (a) Fillers of agent TEACH with corresponding membership [10]

Calculation of μ : Taylor and Raskin (2010, 2011, 2016); Taylor, Raskin and Hempelmann (2011)

Fig. 4: (b) Fillers of agent TEACH with corresponding new membership

Fuzziness in OST



Misra and Rayz, 2020

WPC as Guessing the Meaning of an Unknown Word

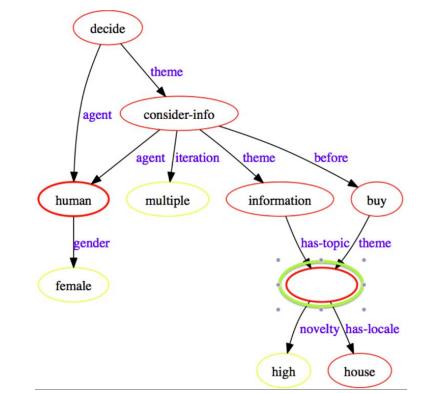
Using cloze tasks as the basis of learning the meaning of words is not new.

Taylor, Raskin, and Hempelmann (2010, 2011): OST and Cloze-tasks to infer the meaning of an unknown word.

She decided she would rethink <u>zzz</u> before buying them for the whole house. (the new curtains)

WPC as Guessing the Meaning of an Unknown Word

She decided she would rethink **<u>zzz</u>** before buying them for the whole house.

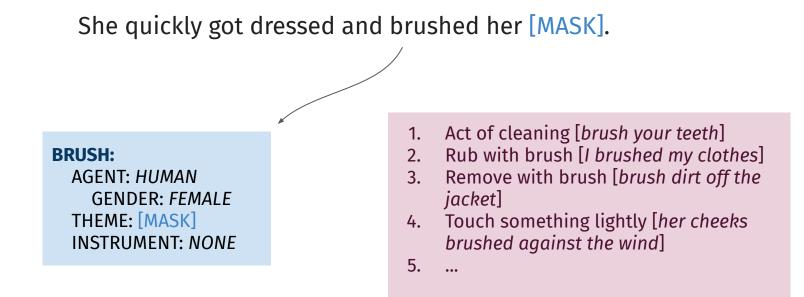


Misra and Rayz, 2020

She decided she would rethink **<u>zzz</u>** before buying them for the whole house.

Rank Token	Probability	Rank	Token	Probability
1 clothes	0.1630	21	design	0.0067
2 designs	0.1320	22	curtains	0.0063
13 paintings	0.0131	23	gifts	0.0060
16 furniture	0.0111	24	wardrobe	0.0057
17 pictures	0.0101	25	products	0.0049
18 books	0.0096	26	toys	0.0047
19 decorations	0.0078	28	photos	0.0041
20 arrangements	0.0070	30	decor	0.0040

Interpreting an Example Sentence



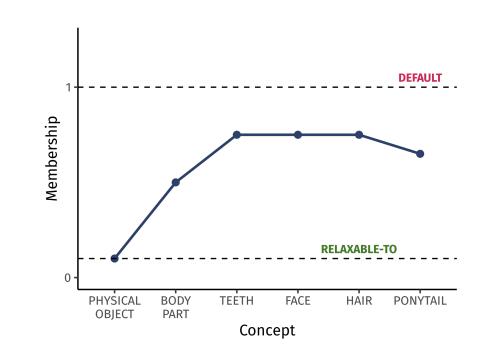
Interpreting an Example Sentence - BERT output

She quickly got dressed and brushed her [MASK].

Rank	Token	Probability
1	teeth	0.8915
2	hair	0.1073
3	face	0.0002
4	ponytail	0.0002
5	dress	0.0001

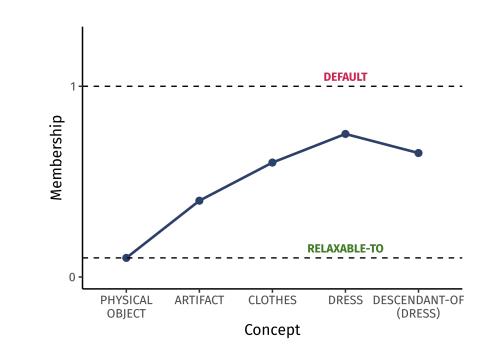
Interpreting an Example Sentence - Emergent μ 's

BRUSH-V1 with BODY-PART concepts as predicted completions



Interpreting an Example Sentence - Emergent μ 's

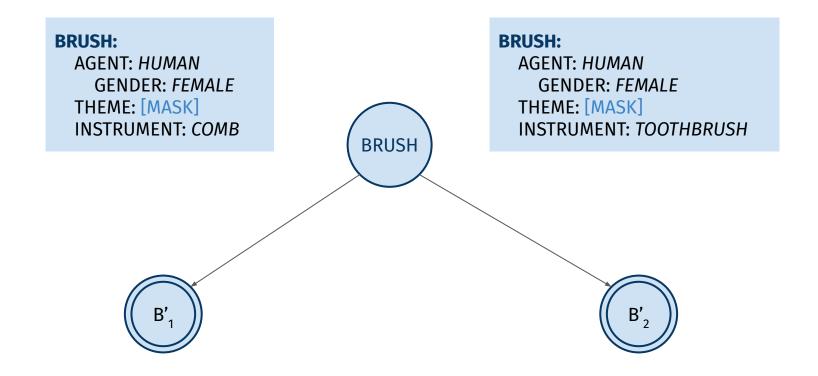
BRUSH-V1 with ARTIFACT concepts as predicted completions



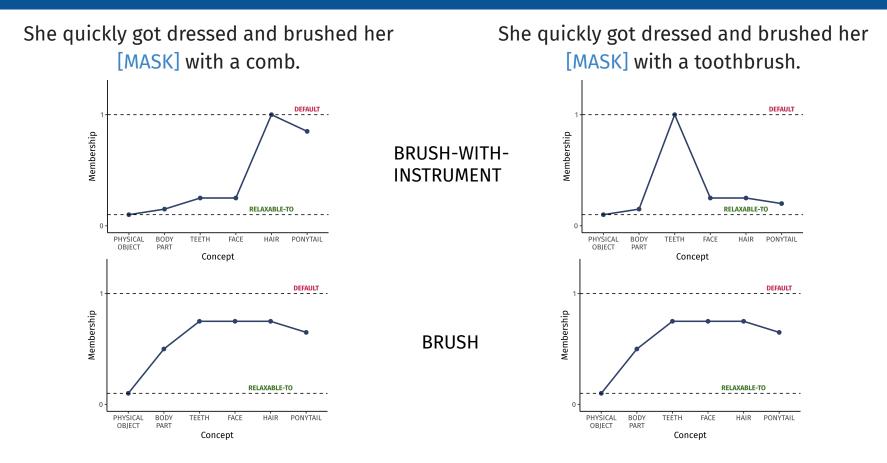
Interpreting an Example Sentence - More Properties!

She quickly got dressed and brushed her [MASK] with a comb.

She quickly got dressed and brushed her [MASK] with a toothbrush.



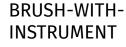
Interpreting an Example Sentence - More Properties!

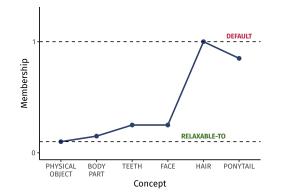


Interpreting an Example Sentence - More Properties!

She quickly got dressed and brushed her [MASK] with a comb.

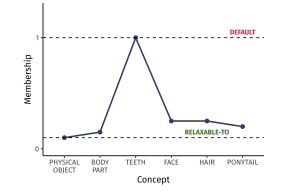
Rank	Token	Probability
1	hair	0.8704
2	teeth	0.1059
3	face	0.0210
12	ponytail	<0.0001
27	dress	<0.0001





She quickly got dressed and brushed her [MASK] with a toothbrush.

Rank	Token	Probability
1	teeth	0.9922
2	hair	0.0052
3	face	0.0019
31	ponytail	<0.0001
98	dress	<<0.0001



Summary of Analysis

- BERT changes its top-predicted word when the instrument of the event changes.
- It is unable to show structural (semantics-wise) phenomena.
- **Evidence:** scoring descendent of HAIR, PONYTAIL lower than a nonsensical concept (in the given instance) TEETH

Summary and Takeaways

- BERT might be good at predicting defaults.
 - needs large scale empirical testing by collecting events and their defaults.
- BERT's MLM training procedure prevents it from learning equally plausible candidates of event fillers.
 - **Hypothesis:** Softmax isn't set up to learn multiple-labels per sample.
 - Especially when limited instances of the same event are encountered in training.
- Ontological Semantics provide semantic desiderata for word prediction in context using fuzzy inferences.

Questions?