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Summary and Takeaways

● Neural Networks based Natural Language Processing:

Word Prediction in Context (WPC) -> Language Representations -> Tasks

● This work: Qualitative Account of WPC using a meaning-based approach to 
knowledge representation.

● Case Study on the BERT model (Devlin et al., 2019).
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Word Prediction in Context

Pretraining
Process of training a Neural Network on large texts. 
Usually using a Language Modelling objective

3

key
lock-pick
screwdriver
...

I unlocked the door using a ______.

Cloze Tasks (Taylor, 1965)
Participants predict blank words in a 
sentence by relying on the context 
surrounding the blank.

Trainable parameters

Hidden state (representations 
useful for NL tasks)

For a sequence of length T: 

word
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BERT - Bidirectional Encoder Representations from Transformers

Large Transformer network (Vaswani et al., 2017) trained 
on large pieces of text to do the following: 
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1) Masked Language Modelling: What is [MASK]?
2) Next Sentence Prediction: Does 2 follow 1?

Oh, I love coffee! I take coffee with [MASK] and sugar.

(Figure from Vaswani et al., 2017)

1 2

Devlin et al., 2019
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Semantic Capacities of BERT

Strong empirical performance when tested on:

● Attributing nouns to their hypernyms: A robin is a bird.
● Commonsense and Pragmatic Inference: He caught the pass and scored another 

touchdown. There was nothing he enjoyed more than a good game of [MASK]. 

P(football) > P(chess)

● Lexical Priming: 
○ (1) delicate. The tea set is very [MASK].
○ (2) salad. The tea set is very [MASK].
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P(fragile | (1)) > P(fragile | (2))

(Ettinger, 2020; Petroni et al., 2019; Misra et al., 2020)
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Semantic Capacities of BERT

Weak performance when tested on:

● Role-reversal: waitress serving customer vs. customer serving waitress.
● Negation: A robin is not a [MASK]. P(bird) = high.
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(Ettinger, 2020; Kassner and Shutze, 2020)

To what extent does BERT understand Natural Language?
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Analyzing BERT’s Semantic and World Knowledge Capacities

Commonsense & World Knowledge 

Items adapted from Psycholinguistic experiments (Ettinger, 2020):
Federmeier and Kutas (1999): He caught the pass and scored another touchdown. There was 
nothing he enjoyed more than a good game of [MASK].

P(football|context) > P(chess|context) [~75% accuracy]

Items constructed from existing Knowledge bases (Petroni et al., 2019)

iPod Touch was produced by [MASK].

Argmax P([MASK] = x) = Apple
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Analyzing BERT’s Semantic and World Knowledge Capacities

Semantic Inference

Items adapted from Psycholinguistic experiments (Ettinger, 2020):
Chow et al. (2016): (1) the restaurant owner forgot which customer the waitress had [MASK].

      (2) the restaurant owner forgot which waitress the customer had [MASK].

P([MASK] = served | (1)) > P([MASK] = served | (2)) [~80% accuracy]

Fischler et al. (1983): (1) A robin is a [MASK].
  (2) A robin is not a [MASK].

<add results>
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Analyzing BERT’s Semantic and World Knowledge Capacities

Lexical Priming

Items adapted from Semantic Priming experiments (Misra, Ettinger, & Rayz, 2020):

(1) delicate. The tea set was very [MASK].
(2) salad. The tea set was very [MASK].

<add results>
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Ontological Semantic Technology (OST)

Meaning first approach to knowledge representation (Nirenburg and Raskin, 2004). 
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Ontology
morphology

phonology

syntax

lexicon

Onomasticon

Commonsense 
Repo

Taylor, Raskin, Hempelmann (2010); Hempelmann, Raskin, Taylor (2010); Raskin, Hempelmann, Taylor (2010)
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Fuzziness in OST

Facets assigned to properties of Events.

For any event, E, its facets represent memberships of concepts based on the 
properties that are endowed to E. 
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INGEST-1
AGENT:

sem: ANIMAL
relaxable-to: SOCIAL-OBJECT

THEME:
sem: FOOD, BEVERAGE
relaxable-to: ANIMAL, PLANT
not: HUMAN

Taylor and Raskin (2010, 2011, 2016)
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Fuzziness in OST

Descendents of the default concept have higher membership than the sem facet.

E.g. TEACHER and INEXPERIENCED-TEACHER 

12

Calculation of μ : Taylor and Raskin (2010, 2011, 2016); Taylor, Raskin and Hempelmann (2011)
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Fuzziness in OST

13

x
WASH:
    THEME:
        default: NONE
        rel-to: physical-object

WASH:
    INSTRUMENT: laundry-detergent
    THEME:
        default: clothes
        rel-to: physical-object

WASH:
    INSTRUMENT: soap
    THEME:
        default: NONE
        rel-to: physical-object

y z

descendent

virtual-nodes
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WPC as Guessing the Meaning of an Unknown Word

Using cloze tasks as the basis of learning the meaning of words is not new.

Taylor, Raskin, and Hempelmann (2010, 2011): OST and Cloze-tasks to infer the 
meaning of an unknown word. 

She decided she would rethink zzz before buying them for the whole house.
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(the new curtains)
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WPC as Guessing the Meaning of an Unknown Word

She decided she would rethink zzz before buying them for the whole house.
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What is zzz according to BERT?

She decided she would rethink zzz before buying them for the whole house.
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Interpreting an Example Sentence

She quickly got dressed and brushed her [MASK]. 
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BRUSH:
    AGENT: HUMAN
        GENDER: FEMALE
    THEME: [MASK]
    INSTRUMENT: NONE

1. Act of cleaning [brush your teeth] 
2. Rub with brush [I brushed my clothes] 
3. Remove with brush [brush dirt off the 

jacket] 
4. Touch something lightly [her cheeks 

brushed against the wind] 
5. ...
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Interpreting an Example Sentence - BERT output

She quickly got dressed and brushed her [MASK]. 
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Rank Token Probability

1 teeth 0.8915

2 hair 0.1073

3 face 0.0002

4 ponytail 0.0002

5 dress 0.0001
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Interpreting an Example Sentence - Emergent μ’s

BRUSH-V1 with BODY-PART 
concepts as predicted 
completions
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Interpreting an Example Sentence - Emergent μ’s

BRUSH-V1 with ARTIFACT 
concepts as predicted 
completions
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Interpreting an Example Sentence - More Properties!
She quickly got dressed and brushed her 

[MASK] with a comb. 
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She quickly got dressed and brushed her 
[MASK] with a toothbrush.

BRUSH:
    AGENT: HUMAN
        GENDER: FEMALE
    THEME: [MASK]
    INSTRUMENT: COMB

BRUSH:
    AGENT: HUMAN
        GENDER: FEMALE
    THEME: [MASK]
    INSTRUMENT: TOOTHBRUSH

BRUSH

B’1 B’2



Interpreting an Example Sentence - More Properties!
She quickly got dressed and brushed her 

[MASK] with a comb. 
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She quickly got dressed and brushed her 
[MASK] with a toothbrush.

BRUSH

BRUSH-WITH-
INSTRUMENT



Interpreting an Example Sentence - More Properties!
She quickly got dressed and brushed her 

[MASK] with a comb. 
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She quickly got dressed and brushed her 
[MASK] with a toothbrush.

Rank Token Probability

1 hair 0.8704

2 teeth 0.1059

3 face 0.0210

12 ponytail <0.0001

27 dress <0.0001

Rank Token Probability

1 teeth 0.9922

2 hair 0.0052

3 face 0.0019

31 ponytail <0.0001

98 dress <<0.0001BRUSH-WITH-
INSTRUMENT
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Summary of Analysis

● BERT changes its top-predicted word when the instrument of the event 
changes.

● It is unable to show structural (semantics-wise) phenomena. 

● Evidence:  scoring descendent of HAIR, PONYTAIL lower than a nonsensical 
concept (in the given instance) – TEETH

24



Misra and Rayz, 2020

Summary and Takeaways

● BERT might be good at predicting defaults.
○ needs large scale empirical testing by collecting events and their defaults.

● BERT’s MLM training procedure prevents it from learning equally plausible 
candidates of event fillers. 
○ Hypothesis: Softmax isn’t set up to learn multiple-labels per sample.

○ Especially when limited instances of the same event are encountered in training.

● Ontological Semantics provide semantic desiderata for word prediction in 
context using fuzzy inferences.
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Questions?


